Catecholamine receptor polymorphisms affect decision-making in C. elegans (original) (raw)
Flint, J. & Mackay, T. F. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res.19, 723–733 (2009) ArticleCAS Google Scholar
Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (Univ. Chicago Press, 2007) Book Google Scholar
Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol.9, 129–136 (1976) ArticleCAS Google Scholar
March, J. G. Exploration and exploitation in organizational learning. Organ. Sci.2, 71–87 (1991) ArticleADS Google Scholar
Barrett, H. C. & Fiddick, L. Evolution and risky decisions. Trends Cogn. Sci.4, 251–252 (2000) ArticleCAS Google Scholar
Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci.28, 403–450 (2005) ArticleCAS Google Scholar
Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans . J. Exp. Zool. B312, 224–230 (2009) Article Google Scholar
Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans . J. Exp. Biol.209, 89–102 (2006) Article Google Scholar
Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans . Curr. Biol.11, 809–821 (2001) ArticleCAS Google Scholar
Pradel, E. et al. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans . Proc. Natl Acad. Sci. USA104, 2295–2300 (2007) ArticleADSCAS Google Scholar
Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci.24, 7427–7434 (2004) ArticleCAS Google Scholar
Gloria-Soria, A. & Azevedo, R. B. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans . Curr. Biol.18, 1694–1699 (2008) ArticleCAS Google Scholar
Styer, K. L. et al. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science322, 460–464 (2008) ArticleADSCAS Google Scholar
Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C.elegans . Science323, 382–384 (2009) ArticleADSCAS Google Scholar
de Bono, M. & Bargmann, C. I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C.elegans . Cell94, 679–689 (1998) ArticleCAS Google Scholar
Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C.elegans guanylate cyclase homologue. Nature430, 317–322 (2004) ArticleADSCAS Google Scholar
Rogers, C., Persson, A., Cheung, B. & de Bono, M. Behavioral motifs and neural pathways coordinating O2 responses and aggregation in C.elegans . Curr. Biol.16, 649–659 (2006) ArticleCAS Google Scholar
Bretscher, A. J., Busch, K. E. & de Bono, M. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA105, 8044–8049 (2008) ArticleADSCAS Google Scholar
McGrath, P. T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C.elegans sensory behaviors. Neuron61, 692–699 (2009) ArticleCAS Google Scholar
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C.elegans . Nature458, 1171–1175 (2009) ArticleADSCAS Google Scholar
Osborne, K. A. et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila . Science277, 834–836 (1997) ArticleCAS Google Scholar
Reaume, C. J. & Sokolowski, M. B. cGMP-dependent protein kinase as a modifier of behaviour. Handb. Exp. Pharmacol.191, 423–443 (2009) ArticleCAS Google Scholar
Hong, R. L., Witte, H. & Sommer, R. J. Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4. Proc. Natl Acad. Sci. USA105, 7779–7784 (2008) ArticleADSCAS Google Scholar
Rockman, M. V. & Kruglyak, L. Recombinational landscape and population genomics of Caenorhabditis elegans . PLoS Genet.5, e1000419 (2009) Article Google Scholar
Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature416, 326–330 (2002) ArticleADSCAS Google Scholar
Edwards, A. C. & Mackay, T. F. Quantitative trait loci for aggressive behavior in Drosophila melanogaster . Genetics182, 889–897 (2009) Article Google Scholar
Legare, M. E., Bartlett, F. S., II & Frankel, W. N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res.10, 42–48 (2000) CASPubMedPubMed Central Google Scholar
Thomson, M. J., Edwards, J. D., Septiningsih, E. M., Harrington, S. E. & McCouch, S. R. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics172, 2501–2514 (2006) ArticleCAS Google Scholar
Wragg, R. T. et al. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J. Neurosci.27, 13402–13412 (2007) ArticleCAS Google Scholar
Mackay, T. F. Quantitative trait loci in Drosophila . Nature Rev. Genet.2, 11–20 (2001) ArticleCAS Google Scholar
Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C.elegans . Neuron7, 729–742 (1991) ArticleCAS Google Scholar
Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA102, 3184–3191 (2005) ArticleADSCAS Google Scholar
Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans . Neurosci. Res.50, 103–111 (2004) Article Google Scholar
Hallem, E. A. & Sternberg, P. W. Acute carbon dioxide avoidance in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA105, 8038–8043 (2008) ArticleADSCAS Google Scholar
Zimmer, M. et al. Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron61, 865–879 (2009) ArticleCAS Google Scholar
Frøkjær-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans . Nature Genet.40, 1375–1383 (2008) Article Google Scholar
Suo, S., Kimura, Y. & Van Tol, H. H. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans . J. Neurosci.26, 10082–10090 (2006) ArticleCAS Google Scholar
Alkema, M. J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H. R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron46, 247–260 (2005) ArticleCAS Google Scholar
Greer, E. R., Perez, C. L., Van Gilst, M. R., Lee, B. H. & Ashrafi, K. Neural and molecular dissection of a C.elegans sensory circuit that regulates fat and feeding. Cell Metab.8, 118–131 (2008) ArticleCAS Google Scholar
Pirri, J. K., McPherson, A. D., Donnelly, J. L., Francis, M. M. & Alkema, M. J. A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron62, 526–538 (2009) ArticleCAS Google Scholar
Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci.28, 9377–9385 (2008) ArticleCAS Google Scholar
Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol.50, 447–477 (2005) ArticleCAS Google Scholar
Hoyer, S. C. et al. Octopamine in male aggression of Drosophila . Curr. Biol.18, 159–167 (2008) ArticleCAS Google Scholar
Yalcin, B. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genet.36, 1197–1202 (2004) ArticleCAS Google Scholar
Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R. & Insel, T. R. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature400, 766–768 (1999) ArticleADSCAS Google Scholar
Mackay, T. F., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nature Rev. Genet.10, 565–577 (2009) ArticleCAS Google Scholar
Gerke, J., Lorenz, K., Ramnarine, S. & Cohen, B. Gene-environment interactions at nucleotide resolution. PLoS Genet.6, e1001144 (2010) Article Google Scholar
Ramot, D., Johnson, B. E., Berry, T. L., Jr, Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE3, e2208 (2008) ArticleADS Google Scholar
Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics19, 889–890 (2003) ArticleCAS Google Scholar
Mello, C. & Fire, A. DNA transformation. Methods Cell Biol.48, 451–482 (1995) ArticleCAS Google Scholar
Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C.elegans . Biotechnique32, 728–730 (2002) ArticleCAS Google Scholar
Ahringer, J. Reverse genetics. In WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.47.1 (6 April 2006); available at 〈http://www.wormbook.org〉.
Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A. & Bargmann, C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C.elegans . Cell83, 207–218 (1995) ArticleCAS Google Scholar
Bargmann, C. I. & Avery, L. Laser killing of cells in Caenorhabditis elegans . Methods Cell Biol.48, 225–250 (1995) ArticleCAS Google Scholar
Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl Acad. Sci. USA104, 2283–2288 (2007) ArticleADSCAS Google Scholar
Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C.elegans . Science326, 994–998 (2009) ArticleADSCAS Google Scholar