Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genet.39, 25–27 (2006) Article Google Scholar
Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature466, 368–372 (2010) ArticleCASADS Google Scholar
Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science316, 445–449 (2007) ArticleCASADS Google Scholar
Geschwind, D. H. Autism: many genes, common pathways? Cell135, 391–395 (2008) ArticleCAS Google Scholar
Amaral, D. G., Schumann, C. M. & Nordahl, C. W. Neuroanatomy of autism. Trends Neurosci.31, 137–145 (2008) ArticleCAS Google Scholar
Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology. Nature Rev. Genet.9, 341–355 (2008) ArticleCAS Google Scholar
Garbett, K. et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis.30, 303–311 (2008) ArticleCAS Google Scholar
Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nature Neurosci.11, 1271–1282 (2008) ArticleCAS Google Scholar
Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.4, 17 (2005).
Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron62, 494–509 (2009) ArticleCAS Google Scholar
Zikopoulos, B. & Barbas, H. Changes in prefrontal axons may disrupt the network in autism. J. Neurosci.30, 14595–14609 (2010) ArticleCAS Google Scholar
Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature452, 429–435 (2008) ArticleCASADS Google Scholar
Plaisier, C. L. et al. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet.5, e1000642 (2009) Article Google Scholar
Babatz, T. D., Kumar, R. A., Sudi, J., Dobyns, W. B. & Christian, S. L. Copy number and sequence variants implicate APBA2 as an autism candidate gene. Autism Res.2, 359–364 (2009) Article Google Scholar
Castermans, D. et al. SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Hum. Mol. Genet.19, 1368–1378 (2010) ArticleCAS Google Scholar
Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B. Neuropsychiatr. Genet.144B, 869–876 (2007) ArticleCAS Google Scholar
Alarcón, M. et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet.82, 150–159 (2008) Article Google Scholar
Underwood, J. G., Boutz, P. L., Dougherty, J. D., Stoilov, P. & Black, D. L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol.25, 10005–10016 (2005) ArticleCAS Google Scholar
Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev.22, 2550–2563 (2008) ArticleCAS Google Scholar
Lee, J. A., Tang, Z. Z. & Black, D. L. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev.23, 2284–2293 (2009) ArticleCAS Google Scholar
Moy, S. S., Nonneman, R. J., Young, N. B., Demyanenko, G. P. & Maness, P. F. Impaired sociability and cognitive function in _Nrcam_-null mice. Behav. Brain Res.205, 123–131 (2009) ArticleCAS Google Scholar
Zhao, X. et al. Significant association between the genetic variations in the 5′ end of the N-methyl-D-aspartate receptor subunit gene GRIN1 and schizophrenia. Biol. Psychiatry59, 747–753 (2006) ArticleCAS Google Scholar
Han, J. et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet.4, e1000074 (2008) Article Google Scholar
Cooper, G. M. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood112, 1022–1027 (2008) ArticleCAS Google Scholar
Morgan, J. T. et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry68, 368–376 (2010) Article Google Scholar
Boulanger, L. M. Immune proteins in brain development and synaptic plasticity. Neuron64, 93–109 (2009) ArticleCAS Google Scholar
Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature459, 528–533 (2009) ArticleCASADS Google Scholar
Wintle, R. F. et al. (2010). A genotype resource for postmortem brain samples from the Autism Tissue Program. Autism Res.4, 89–97 (2011) Article Google Scholar
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559 (2008) Article Google Scholar
Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics24, 719–720 (2008) ArticleCAS Google Scholar
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28, 264–278 (2008) ArticleCAS Google Scholar
Albright, A. V. & Gonzalez-Scarano, F. Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J. Neuroimmunol.157, 27–38 (2004) ArticleCAS Google Scholar
Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nature Neurosci.11, 1271–1282 (2008) ArticleCAS Google Scholar
Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA107, 12698–12703 (2010) ArticleCASADS Google Scholar
Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science327, 996–1000 (2010) ArticleCASADS Google Scholar
Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet.40, 1413–1415 (2008) ArticleCAS Google Scholar
Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet.81, 1278–1283 (2007) ArticleCAS Google Scholar
Zhang, K., Cui, S., Chang, S., Zhang, L. & Wang, J. _i_-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res.38 (suppl. 2). W90–W95 (2010) ArticleCAS Google Scholar