Latent TGF-β structure and activation (original) (raw)
Wu, M. Y. & Hill, C. S. TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell16, 329–343 (2009) ArticleCAS Google Scholar
Derynck, R. & Miyazono, K. in The TGF-β Family (eds Derynck, R. & Miyazono, K. ) Ch. 2, 29–43 (Cold Spring Harbor Laboratory Press, 2008) Google Scholar
Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med.342, 1350–1358 (2000) ArticleCAS Google Scholar
Gray, A. M. & Mason, A. J. Requirement for activin A and transforming growth factor-β 1 pro-regions in homodimer assembly. Science247, 1328–1330 (1990) ArticleADSCAS Google Scholar
Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol.165, 723–734 (2004) ArticleCAS Google Scholar
Ramirez, F. & Sakai, L. Y. Biogenesis and function of fibrillin assemblies. Cell Tissue Res.339, 71–82 (2010) ArticleCAS Google Scholar
Yang, Z. et al. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol.176, 787–793 (2007) ArticleCAS Google Scholar
Wipff, P. J. & Hinz, B. Integrins and the activation of latent transforming growth factor β1 — an intimate relationship. Eur. J. Cell Biol.87, 601–615 (2008) ArticleCAS Google Scholar
Aluwihare, P. et al. Mice that lack activity of αVβ6- and αVβ8-integrins reproduce the abnormalities of _Tgfβ1_- and _Tgfβ3_-null mice. J. Cell Sci.122, 227–232 (2009) ArticleCAS Google Scholar
Munger, J. S. et al. The integrin αVβ6 binds and activates latent TGF β1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell96, 319–328 (1999) ArticleCAS Google Scholar
Yoshinaga, K. et al. Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors. Proc. Natl Acad. Sci. USA105, 18758–18763 (2008) ArticleADSCAS Google Scholar
Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics24, 2780–2781 (2008) ArticleCAS Google Scholar
Daopin, S., Piez, K. A., Ogawa, Y. & Davies, D. R. Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science257, 369–373 (1992) ArticleADSCAS Google Scholar
Schlunegger, M. P. & Grutter, M. G. An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth factor-β2. Nature358, 430–434 (1992) ArticleADSCAS Google Scholar
Radaev, S. et al. Ternary complex of transforming growth factor-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J. Biol. Chem.285, 14806–14814 (2010) ArticleCAS Google Scholar
Gentry, L. E. & Nash, B. W. The pro domain of pre-pro-transforming growth factor β1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry29, 6851–6857 (1990) ArticleCAS Google Scholar
Belville, C. et al. Mutations of the anti-Müllerian hormone gene in patients with persistent Müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model. Mol. Endocrinol.18, 708–721 (2004) ArticleCAS Google Scholar
Walton, K. L. et al. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-β1 complex. J. Biol. Chem.285, 17029–17037 (2010) ArticleCAS Google Scholar
Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nature Cell Biol.11, 637–643 (2009) ArticleCAS Google Scholar
Lack, J. et al. Solution structure of the third TB domain from LTBP1 provides insight into assembly of the large latent complex that sequesters latent TGF-β. J. Mol. Biol.334, 281–291 (2003) ArticleCAS Google Scholar
Chen, Y. et al. Amino acid requirements for formation of the TGF-β-latent TGF-β binding protein complexes. J. Mol. Biol.345, 175–186 (2005) ArticleCAS Google Scholar
Luo, B.-H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol.25, 619–647 (2007) ArticleCAS Google Scholar
Forman, J. R. & Clarke, J. Mechanical unfolding of proteins: insights into biology, structure and folding. Curr. Opin. Struct. Biol.17, 58–66 (2007) ArticleCAS Google Scholar
Janssens, K. et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J. Med. Genet.43, 1–11 (2005) Article Google Scholar
Walton, K. L. et al. A common biosynthetic pathway governs the dimerization and secretion of inhibin and related transforming growth factor β (TGFβ) ligands. J. Biol. Chem.284, 9311–9320 (2009) ArticleCAS Google Scholar
Anderson, S. B., Goldberg, A. L. & Whitman, M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J. Biol. Chem.283, 7027–7035 (2008) ArticleCAS Google Scholar
Sengle, G. et al. Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J. Biol. Chem.283, 13874–13888 (2008) ArticleCAS Google Scholar
Cui, Y. et al. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev.15, 2797–2802 (2001) CASPubMedPubMed Central Google Scholar
Blanchet, M. H. et al. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J.27, 2580–2591 (2008) ArticleCAS Google Scholar
Wilson, C. A. et al. Müllerian inhibiting substance requires its N-terminal domain for maintenance of biological activity, a novel finding within the transforming growth factor-β superfamily. Mol. Endocrinol.7, 247–257 (1993) CASPubMed Google Scholar
Ulloa, L. et al. Lefty proteins exhibit unique processing and activate the MAPK pathway. J. Biol. Chem.276, 21387–21396 (2001) ArticleCAS Google Scholar
Keefe, A. D., Wilson, D. S., Seelig, B. & Szostak, J. W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif.23, 440–446 (2001) ArticleCAS Google Scholar
Zou, Z. & Sun, P. D. Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system. Protein Expr. Purif.37, 265–272 (2004) ArticleCAS Google Scholar
Gentry, L. E. et al. Type 1 transforming growth factor beta: amplified expression and secretion of mature and precursor polypeptides in Chinese hamster ovary cells. Mol. Cell. Biol.7, 3418–3427 (1987) ArticleCAS Google Scholar
Brunner, A. M. et al. Site-directed mutagenesis of glycosylation sites in the transforming growth factor-beta 1 (TGF beta 1) and TGF beta 2 (414) precursors and of cysteine residues within mature TGF beta 1: effects on secretion and bioactivity. Mol. Endocrinol.6, 1691–1700 (1992) CASPubMed Google Scholar
Heras, B. & Martin, J. L. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr. D61, 1173–1180 (2005) Article Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Kabsch, W. in International Tables for Crystallography, Vol. F: Crystallography of Biological Macromolecules (eds Rossmann, M. G. & Arnold, E. V. ) Ch. 25.2.9 XDS, 730–734 (Springer, 2001) Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) Article Google Scholar
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D66, 22–25 (2010) ArticleCAS Google Scholar
Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D66, 470–478 (2010) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res.35, W375–W383 (2007) ArticleADS Google Scholar
Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell110, 599–611 (2002) ArticleCAS Google Scholar
Chen, X. et al. Requirement of open headpiece conformation for activation of leukocyte integrin αXβ2 . Proc. Natl Acad. Sci. USA107, 14727–14732 (2010) ArticleADSCAS Google Scholar