The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth (original) (raw)
Wijnen, H. & Young, M. W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet.40, 409–448 (2006) ArticleCAS Google Scholar
Yakir, E., Hilman, D., Harir, Y. & Green, R. M. Regulation of output from the plant circadian clock. FEBS J.274, 335–345 (2007) ArticleCAS Google Scholar
Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol.60, 357–377 (2009) ArticleCAS Google Scholar
Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature448, 358–361 (2007) ArticleADSCAS Google Scholar
Michael, T. P. et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol.6, e225 (2008) Article Google Scholar
Niwa, Y., Yamashino, T. & Mizuno, T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana . Plant Cell Physiol.50, 838–854 (2009) ArticleCAS Google Scholar
de Montaigu, A., Tóth, R. & Coupland, G. Plant development goes like clockwork. Trends Genet.26, 296–306 (2010) ArticleCAS Google Scholar
Zagotta, M. T. et al. The ArabidopsisELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J.10, 691–702 (1996) ArticleCAS Google Scholar
Hicks, K. A., Albertson, T. M. & Wagner, D. R. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis . Plant Cell13, 1281–1292 (2001) ArticleCAS Google Scholar
Doyle, M. R. et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana . Nature419, 74–77 (2002) ArticleADSCAS Google Scholar
Hazen, S. P. et al. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl Acad. Sci. USA102, 10387–10392 (2005) ArticleADSCAS Google Scholar
Onai, K. & Ishiura, M. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells10, 963–972 (2005) ArticleCAS Google Scholar
Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J.53, 312–323 (2008) ArticleCAS Google Scholar
Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science274, 790–792 (1996) ArticleADSCAS Google Scholar
Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell13, 1293–1304 (2001) ArticleCAS Google Scholar
Khanna, R., Kikis, E. A. & Quail, P. H. EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol.133, 1530–1538 (2003) ArticleCAS Google Scholar
Thines, B. & Harmon, F. G. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA107, 3257–3262 (2010) ArticleADSCAS Google Scholar
Mockler, T. C. et al. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching and promoter analysis. Cold Spring Harb. Symp. Quant. Biol.72, 353–363 (2007) ArticleCAS Google Scholar
Michael, T. P. et al. Network discovery pipeline elucidates conserved time-of-day-specific _cis_-regulatory modules. PLoS Genet.4, e14 (2008) Article Google Scholar
Helfer, A. et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol.21, 126–133 (2011) ArticleCAS Google Scholar
Hazen, S. P. et al. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis . Plant Physiol.138, 990–997 (2005) ArticleCAS Google Scholar
Yu, J. W. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell32, 617–630 (2008) ArticleCAS Google Scholar
de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature451, 480–484 (2008) ArticleADSCAS Google Scholar
Dixon, L. E. et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis . Curr. Biol.21, 120–125 (2011) ArticleCAS Google Scholar
Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis . Plant Cell18, 1121–1133 (2006) ArticleCAS Google Scholar
Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J.53, 674–690 (2008) ArticleCAS Google Scholar
Lu, S. X., Knowles, S. M., Andronis, C., Ong, M. S. & Tobin, E. M. CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis . Plant Physiol.150, 834–843 (2009) ArticleCAS Google Scholar
Kikis, E. A., Khanna, R. & Quail, P. H. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J.44, 300–313 (2005) ArticleCAS Google Scholar
Sawa, M., Nusinow, D. A., Kay, S. A. & Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis . Science318, 261–265 (2007) ArticleADSCAS Google Scholar
Para, A. et al. PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell19, 3462–3473 (2007) ArticleCAS Google Scholar
Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science267, 1161–1163 (1995) ArticleADSCAS Google Scholar
Neff, M. M., Turk, E. & Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet.18, 613–615 (2002) ArticleCAS Google Scholar
Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science293, 880–883 (2001) ArticleCAS Google Scholar
Liu, Y. G., Mitsukawa, N., Oosumi, T. & Whittier, R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J.8, 457–463 (1995) ArticleCAS Google Scholar
Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for _Agrobacterium_-mediated plant transformation. Trends Plant Sci.7, 193–195 (2002) ArticleCAS Google Scholar
Pruneda-Paz, J., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science323, 1481–1485 (2009) ArticleADSCAS Google Scholar
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for _Agrobacterium_-mediated transformation of Arabidopsis thaliana . Plant J.16, 735–743 (1998) ArticleCAS Google Scholar
Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms12, 204–217 (1997) ArticleCAS Google Scholar
Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratories Press, 1999) Google Scholar
Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J.45, 616–629 (2006) ArticleCAS Google Scholar
Haring, M. et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods3, 11 (2007) Article Google Scholar
Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol.132, 365–386 (2000) CASPubMed Google Scholar
Czechowski, T., Bari, R. P., Stitt, M., Scheible, W. R. & Udvardi, M. K. Real-time RT–PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J.38, 366–379 (2004) ArticleCAS Google Scholar