Persistence of soil organic matter as an ecosystem property (original) (raw)

References

  1. Fischlin, A. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. ) 211–272 (Cambridge Univ. Press, 2007)
    Google Scholar
  2. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006)A systematic comparison of model predictions of soil carbon response to climate change.
    ADS Google Scholar
  3. von Lützow, M. & Kögel-Knabner, I. Temperature sensitivity of soil organic matter decomposition—what do we know? Biol. Fertil. Soils 46, 1–15 (2009)A review and outline of research needs about the response of soil organic matter to rising temperatures
    Google Scholar
  4. Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition — still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006)
    CAS Google Scholar
  5. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008)
    CAS PubMed ADS Google Scholar
  6. Trumbore, S. E. & Czimczik, C. I. An uncertain future for soil carbon. Science 321, 1455–1456 (2008)
    CAS PubMed Google Scholar
  7. Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996)Described mechanisms of SOM stabilization involving environmental controls.
    ADS Google Scholar
  8. Hedges, J. I. et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000)Formulated the fundamental question of why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years?
    CAS Google Scholar
  9. Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and sediments. Org. Geochem. 27, 319–361 (1997)
    CAS Google Scholar
  10. Totsche, K. U. et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88–99 (2010)
    CAS Google Scholar
  11. Oades, J. M. The retention of organic matter in soils. Biogeochemistry 5, 35–70 (1988)
    CAS Google Scholar
  12. Marschner, B. et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91–110 (2008)
    CAS Google Scholar
  13. Kleber, M. & Johnson, M. G. Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv. Agron. 106, 77–142 (2010)
    CAS Google Scholar
  14. Melillo, J. M., Aber, J. D. & Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626 (1982)
    CAS Google Scholar
  15. Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. Combining biomarker with stable isotope analysis for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100, 155–250 (2008)A review including a compilation of the surprisingly rapid and overlapping turnover times of individual molecular compounds previously suspected to have ‘slow’ turnover.
    CAS Google Scholar
  16. Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257 (2005)
    Google Scholar
  17. Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297–307 (2008)
    CAS PubMed ADS Google Scholar
  18. Ekschmitt, K. et al. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci. 171, 27–35 (2008)
    CAS Google Scholar
  19. Stevenson, F. J. Humus Chemistry (Wiley, 1994)
    Google Scholar
  20. Olk, D. C. & Gregorich, E. G. Overview of the symposium proceedings, “Meaningful pools in determining soil carbon and nitrogen dynamics”. Soil Sci. Soc. Am. J. 70, 967–974 (2006)
    CAS ADS Google Scholar
  21. von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions — a review. Eur. J. Soil Sci. 57, 426–445 (2006)
    Google Scholar
  22. Lehmann, J. et al. Spatial complexity of soil organic matter forms at nanometre scales. Nature Geosci. 1, 238–242 (2008)
    CAS ADS Google Scholar
  23. Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009–9015 (2005)
    CAS PubMed ADS Google Scholar
  24. Haumaier, L. & Zech, W. Black carbon — possible source of highly aromatic components of soil humic acids. Org. Geochem. 23, 191–196 (1995)
    CAS Google Scholar
  25. Trompowsky, P. M. et al. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org. Geochem. 36, 1480–1489 (2005)
    CAS Google Scholar
  26. Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420 (2006)A summary of the current understanding of the formation, properties and fate of fire-residues in natural ecosystems.
    CAS ADS Google Scholar
  27. Schmidt, M. W. I. & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–794 (2000)
    CAS ADS Google Scholar
  28. Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G. & Weiner, S. Modern and fossil charcoal: aspects of structure and diagenesis. J. Archaeol. Sci. 33, 428–439 (2006)
    Google Scholar
  29. Hammes, K., Torn, M. S., Lapenas, A. G. & Schmidt, M. W. I. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5, 1339–1350 (2008)
    CAS ADS Google Scholar
  30. Major, J., Lehmann, J., Rondon, M. & Goodale, C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16, 1366–1379 (2010)
    ADS Google Scholar
  31. Kim, S., Kaplan, L. A., Benner, R. & Hatcher, P. G. Hydrogen-deficient molecules in natural riverine water samples — evidence for the existence of black carbon in DOM. Mar. Chem. 92, 225–234 (2004)
    CAS Google Scholar
  32. Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nature Geosci. 2, 175–179 (2009)
    CAS ADS Google Scholar
  33. Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37, L16601 (2010)
    ADS Google Scholar
  34. Nguyen, B. T., Lehmann, J., Hockaday, W. C., Joseph, S. & Masiello, C. A. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331 (2010)
    CAS PubMed ADS Google Scholar
  35. Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)
    CAS PubMed ADS Google Scholar
  36. Liang, B. et al. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 72, 6069–6078 (2008)
    CAS ADS Google Scholar
  37. Cheng, C. H. & Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021–1027 (2009)
    CAS PubMed ADS Google Scholar
  38. Lehmann, J. et al. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geosci. 1, 832–835 (2008)
    CAS ADS Google Scholar
  39. Brodowski, S., John, B., Flessa, H. & Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 57, 539–546 (2006)
    Google Scholar
  40. Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005)
    CAS Google Scholar
  41. Kong, A. Y. Y. & Six, J. Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J. 74, 1201–1210 (2010)
    CAS ADS Google Scholar
  42. Balesdent, J. & Balabane, M. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28, 1261–1263 (1996)
    CAS Google Scholar
  43. Mendez-Millan, M., Dignac, M. F., Rumpel, C., Rasse, D. P. & Derenne, S. Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biol. Biochem. 42, 169–177 (2010)
    CAS Google Scholar
  44. Kramer, C. et al. Recent (4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 42, 1028–1037 (2010)
    CAS Google Scholar
  45. Bird, J. A., Kleber, M. & Torn, M. S. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org. Geochem. 39, 465–477 (2008)
    CAS Google Scholar
  46. Bird, J. A. & Torn, M. S. Fine roots vs. needles: A comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79, 361–382 (2006)
    Google Scholar
  47. Godbold, D. L. et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281, 15–24 (2006)
    CAS Google Scholar
  48. Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007)
    CAS PubMed ADS Google Scholar
  49. Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010)
    CAS Google Scholar
  50. Ågren, G. I., Bosatta, E. & Magill, A. H. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128, 94–98 (2001)
    PubMed ADS Google Scholar
  51. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci. 3, 315–322 (2010)
    CAS ADS Google Scholar
  52. Chabbi, A., Kogel-Knabner, I. & Rumpel, C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol. Biochem. 41, 256–261 (2009)
    CAS Google Scholar
  53. Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000)
    Google Scholar
  54. Trumbore, S. E., Davidson, E. A., de Camargo, P. B., Nepstad, D. C. & Martinelli, L. A. Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Glob. Biogeochem. Cycles 9, 515–528 (1995)
    CAS ADS Google Scholar
  55. Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter — a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 (2011)A comprehensive overview of key challenges to quantitative understanding of deep soil carbon.
    CAS Google Scholar
  56. Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37, 1319–1331 (2005)
    CAS Google Scholar
  57. Torn, M. S. et al. Organic carbon and carbon isotopes in modern and 100-year-old soil archives of the Russian steppe. Glob. Change Biol. 8, 941–953 (2002)
    ADS Google Scholar
  58. Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003)
    ADS Google Scholar
  59. Kramer, C. & Gleixner, G. Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40, 425–433 (2008)
    CAS Google Scholar
  60. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23 GB2023 10.1029/2008GB003327 (2009)
    Article CAS ADS Google Scholar
  61. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009)
    CAS PubMed ADS Google Scholar
  62. Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008)
    Google Scholar
  63. Nowinski, N. S., Taneva, L., Trumbore, S. E. & Welker, J. M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163, 785–792 (2010)
    PubMed PubMed Central ADS Google Scholar
  64. Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004)
    CAS PubMed ADS Google Scholar
  65. Nowinski, N. S., Trumbore, S. E., Schuur, E. A. G., Mack, M. C. & Shaver, G. R. Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11, 16–25 (2008)
    CAS Google Scholar
  66. Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32 L21413 10.1029/2005GL024413 (2005)
    Article ADS Google Scholar
  67. Kawahigashi, M., Kaiser, K., Rodionov, A. & Guggenberger, G. Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra. Glob. Change Biol. 12, 1868–1877 (2006)
    ADS Google Scholar
  68. Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008)
    CAS Google Scholar
  69. Morales, S. E. & Holben, W. E. Linking bacterial identities and ecosystem processes: can 'omic' analyses be more than the sum of their parts? FEMS Microbiol. Ecol. 75, 2–16 (2011)
    CAS PubMed Google Scholar
  70. Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002)
    Google Scholar
  71. McGuire, K. L. & Treseder, K. K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol. Biochem. 42, 529–535 (2010)
    CAS Google Scholar
  72. von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007)
    CAS PubMed ADS Google Scholar
  73. Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 7, 320–332 (2010)
    CAS Google Scholar
  74. Manzoni, S. & Porporato, A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41, 1355–1379 (2009)
    CAS Google Scholar
  75. Kucharik, C. J. et al. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: potential for SOC sequestration during the next 50 years. Ecosystems 4, 237–258 (2001)
    CAS Google Scholar
  76. Jenkinson, D. S. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. 329, 361–368 (1990)
    CAS Google Scholar
  77. Parton, W. J., Ojima, D. S., Cole, C. V. & Schimel, D. S. in Quantitative Modeling of Soil Forming Processes (eds Bryant, R. B. & Arnold, R. W. ) 147–167 (Special Publication, Soil Science Society of America, 1994)
    Google Scholar
  78. Thornton, P. E. & Rosenbloom, N. A. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Model. 189, 25–48 (2005)
    CAS Google Scholar
  79. Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. & Zimov, S. A. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B 60, 250–264 (2008)
    ADS Google Scholar
  80. Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)
    Google Scholar
  81. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006)
    CAS PubMed ADS Google Scholar
  82. Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005)
    CAS PubMed ADS Google Scholar
  83. Kirschbaum, M. U. F. The temperature dependence of organic matter decomposition: seasonal temperature variations turn a sharp short-term temperature response into a more moderate annually averaged response. Glob. Change Biol. 16, 2117–2129 (2010)
    ADS Google Scholar
  84. Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433, 57–59 (2005)
    CAS PubMed ADS Google Scholar
  85. Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geosci. 3, 854–857 (2010)
    CAS ADS Google Scholar
  86. Lorenz, K., Lal, R., Preston, C. M. & Nierop, K. G. J. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142, 1–10 (2007)
    CAS ADS Google Scholar
  87. Thevenot, M., Dignac, M. F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010)
    CAS Google Scholar
  88. Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007)
    CAS PubMed ADS Google Scholar
  89. Sachs, J. et al. Monitoring the world's agriculture. Nature 466, 558–560 (2010)
    CAS PubMed ADS Google Scholar
  90. Richter, D. D., Hofmockel, M., Callaham, M. A., Powlson, D. S. & Smith, P. Long-term soil experiments: keys to managing Earth's rapidly changing ecosystems. Soil Sci. Soc. Am. J. 71, 266–279 (2007)
    CAS ADS Google Scholar
  91. Amundson, R. & Jenny, H. The place of humans in the state factor theory of ecosystems and their soils. Soil Sci. 151, 99–109 (1991)
    ADS Google Scholar
  92. Amstalden van Hove, E. R., Smith, D. F. & Heeren, R. M. A. A concise review of mass spectrometry imaging. J. Chromatogr. A 1217, 3946–3954 (2010)
    CAS PubMed Google Scholar
  93. Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry — a new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 39, 1835–1850 (2007)
    CAS Google Scholar
  94. Ranjard, L. et al. Biogeography of soil microbial communities: a review and a description of the ongoing French national initiative. Agron. Sustain. Dev. 30, 359–365 (2010)
    Google Scholar
  95. Pascault, N. et al. In situ dynamics of microbial communities during decomposition of wheat, rape and alfalfa residues. Microb. Ecol. 60, 816–828 (2010)
    PubMed Google Scholar
  96. Xu, T. F. Incorporating aqueous reaction kinetics and biodegradation into TOUGHREACT: applying a multiregion model to hydrobiogeochemical transport of denitrification and sulfate reduction. Vadose Zone J. 7, 305–315 (2008)
    CAS Google Scholar
  97. Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Rev. Microbiol. 8, 593–599 (2010)
    CAS Google Scholar
  98. Sollins, P., Swanston, C. & Kramer, M. Stabilization and destabilization of soil organic matter — a new focus. Biogeochemistry 85, 1–7 (2007)
    Google Scholar
  99. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997)
    CAS ADS Google Scholar
  100. Kelleher, B. P. & Simpson, A. J. Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 40, 4605–4611 (2006)
    CAS PubMed ADS Google Scholar

Download references