S-nitrosylation of NADPH oxidase regulates cell death in plant immunity (original) (raw)

References

  1. MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997)
    Article ADS CAS Google Scholar
  2. Tada, Y. et al. Plant immunity requires conformational changes of NPR1 via _S_-nitrosylation and thioredoxins. Science 321, 952–956 (2008)
    Article ADS CAS Google Scholar
  3. Delledonne, M. Xia, Y. Dixon, R. A. & Lamb, C. J. Nitric oxide functions as signal in plant disease resistance. Nature 394, 585–588 (1998)
    Article ADS CAS Google Scholar
  4. Durner, J., Wendehenne, D. & Klessig, D. F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc. Natl Acad. Sci. USA 95, 10328–10333 (1998)
    Article ADS CAS Google Scholar
  5. Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl Acad. Sci. USA 99, 517–522 (2002)
    Article ADS CAS Google Scholar
  6. Delledonne, M., Zeier, J., Marocco, A. & Lamb, C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl Acad. Sci. USA 98, 13454–13459 (2001)
    Article ADS CAS Google Scholar
  7. Leitner, M., Vandelle, E., Gaupels, F., Bellin, D. & Delledonne, M. NO signals in the haze: nitric oxide signalling in plant defence. Curr. Opin. Plant Biol. 12, 451–458 (2009)
    Article CAS Google Scholar
  8. Feechan, A. et al. A central role for _S_-nitrosothiols in plant disease resistance. Proc. Natl Acad. Sci. USA 102, 8054–8059 (2005)
    Article ADS CAS Google Scholar
  9. He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 (2004)
    Article ADS CAS Google Scholar
  10. Grant, M. R. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846 (1995)
    Article ADS CAS Google Scholar
  11. Gassmann, W., Hinsch, M. E. & Staskawicz, B. J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease resistance genes. Plant J. 20, 265–277 (1999)
    Article CAS Google Scholar
  12. Liu, L. et al. Essential roles of _S_-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004)
    Article CAS Google Scholar
  13. Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A. & Lamb, C. J. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261–270 (1997)
    Article CAS Google Scholar
  14. Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565 (2001)
    Article ADS CAS Google Scholar
  15. Yu, I. C., Parker, J. & Bent, A. F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl Acad. Sci. USA 95, 7819–7824 (1998)
    Article ADS CAS Google Scholar
  16. Holub, E. B. Beynon, J. L. & Crute, I. R. Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana . Mol. Plant Microbe Interact. 7, 223–239 (1994)
    Article CAS Google Scholar
  17. Keller, H. et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11, 223–236 (1999)
    Article CAS Google Scholar
  18. Nawrath, C. & Metraux, J. P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393–1404 (1999)
    CAS PubMed PubMed Central Google Scholar
  19. Wang, Y.-Q. et al. _S_-nitrosylation of AtSABP3 antagonises the expression of plant immunity. J. Biol. Chem. 284, 2131–2137 (2009)
    Article CAS Google Scholar
  20. Romero-Puertas, M. C. et al. _S_-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19, 4120–4130 (2007)
    Article CAS Google Scholar
  21. Lindermayr, C., Sell, S., Müller, B., Leister, D. & Durner, J. Redox regulation of the NPR1–TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22, 2894–2907 (2010)
    Article CAS Google Scholar
  22. Jaffrey, S. R., Erdjument-Bromge, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein _S_-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol. 3, 193–197 (2001)
    Article CAS Google Scholar
  23. Selemidis, S., Dusting, G. J., Peshavariya, H., Kemp-Harper, B. K. & Drummond, G. R. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by _S_-nitrosylation in human endothelial cells. Cardiovasc. Res. 75, 349–358 (2007)
    Article CAS Google Scholar
  24. Ingelman, M., Bianchi, V. & Eklund, H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 Å resolution. J. Mol. Biol. 268, 147–157 (1997)
    Article CAS Google Scholar
  25. Zhen, L., Yu, L. & Dinauer, M. C. Probing the role of the carboxyl terminus of the gp91 phox subunit of neutrophil flavocytochrome b 558 using site-directed mutagenesis. J. Biol. Chem. 273, 6575–6581 (1998)
    Article CAS Google Scholar
  26. Matthews, J. R. et al. Inhibition of NF-κβ DNA binding by nitric oxide. Nucleic Acids Res. 24, 2236–2242 (1996)
    Article CAS Google Scholar
  27. Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999)
    Article ADS CAS Google Scholar
  28. Yun, B.-W. et al. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J. 34, 768–777 (2003)
    Article CAS Google Scholar
  29. Aboul-Soud, M. A. M., Cook, K. & Loake, G. J. Measurement of salicylic acid by a high-performance liquid chromatography procedure based on ion-exchange. Chromatographia 59, 129–133 (2004)
    CAS Google Scholar
  30. Liu, L. et al. Essential roles of _S_-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004)
    Article CAS Google Scholar
  31. Foissner, I., Wendehenne, D., Langebartels, C. & Durner, J. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J. 23, 817–824 (2000)
    Article CAS Google Scholar
  32. Whalen, M. C., Innes, R. W., Bent, A. F. & Staskawicz, B. J. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49–59 (1991)
    Article CAS Google Scholar
  33. Dellagi, A., Brisset, M.-N., Jean-Pierre Paulin, J.-P. & Expert, D. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol. Plant Microbe Interact. 11, 734–742 (1998)
    Article CAS Google Scholar
  34. Liu, Q., Li, M., Leibham, D., Cortez, D. & Elledge, S. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8, 1300–1309 (1998)
    Article CAS Google Scholar
  35. Sagi, M. & Fluhr, R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 1281–1290 (2001)
    Article CAS Google Scholar
  36. Chen, Y. Y., Huang, Y. F., Khoo, K. H. & Meng, T. C. Mass spectrometry-based analyses for identifying and characterizing _S_-nitrosylation of protein tyrosine phosphatases. Methods 42, 243–249 (2007)
    Article CAS Google Scholar
  37. Shen, A. L. &. Kasper, C. B. Differential contribution of NADPH-cytochrome P450 oxidoreductase FAD binding site residues to flavin binding and catalysis. J. Biol. Chem. 275, 41087–41091 (2000)
    Article CAS Google Scholar
  38. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)
    Article CAS Google Scholar
  39. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)
    Article CAS Google Scholar
  40. Cole, C., Barber, J. D. & Barton, G. J. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197–W201 (2008)
    Article CAS Google Scholar

Download references