S-nitrosylation of NADPH oxidase regulates cell death in plant immunity (original) (raw)
References
MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA94, 5243–5248 (1997) ArticleADSCAS Google Scholar
Tada, Y. et al. Plant immunity requires conformational changes of NPR1 via _S_-nitrosylation and thioredoxins. Science321, 952–956 (2008) ArticleADSCAS Google Scholar
Delledonne, M. Xia, Y. Dixon, R. A. & Lamb, C. J. Nitric oxide functions as signal in plant disease resistance. Nature394, 585–588 (1998) ArticleADSCAS Google Scholar
Durner, J., Wendehenne, D. & Klessig, D. F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc. Natl Acad. Sci. USA95, 10328–10333 (1998) ArticleADSCAS Google Scholar
Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl Acad. Sci. USA99, 517–522 (2002) ArticleADSCAS Google Scholar
Delledonne, M., Zeier, J., Marocco, A. & Lamb, C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl Acad. Sci. USA98, 13454–13459 (2001) ArticleADSCAS Google Scholar
Leitner, M., Vandelle, E., Gaupels, F., Bellin, D. & Delledonne, M. NO signals in the haze: nitric oxide signalling in plant defence. Curr. Opin. Plant Biol.12, 451–458 (2009) ArticleCAS Google Scholar
Feechan, A. et al. A central role for _S_-nitrosothiols in plant disease resistance. Proc. Natl Acad. Sci. USA102, 8054–8059 (2005) ArticleADSCAS Google Scholar
He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science305, 1968–1971 (2004) ArticleADSCAS Google Scholar
Grant, M. R. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science269, 843–846 (1995) ArticleADSCAS Google Scholar
Gassmann, W., Hinsch, M. E. & Staskawicz, B. J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease resistance genes. Plant J.20, 265–277 (1999) ArticleCAS Google Scholar
Liu, L. et al. Essential roles of _S_-nitrosothiols in vascular homeostasis and endotoxic shock. Cell116, 617–628 (2004) ArticleCAS Google Scholar
Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A. & Lamb, C. J. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell9, 261–270 (1997) ArticleCAS Google Scholar
Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature414, 562–565 (2001) ArticleADSCAS Google Scholar
Yu, I. C., Parker, J. & Bent, A. F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl Acad. Sci. USA95, 7819–7824 (1998) ArticleADSCAS Google Scholar
Holub, E. B. Beynon, J. L. & Crute, I. R. Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana . Mol. Plant Microbe Interact.7, 223–239 (1994) ArticleCAS Google Scholar
Keller, H. et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell11, 223–236 (1999) ArticleCAS Google Scholar
Nawrath, C. & Metraux, J. P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell11, 1393–1404 (1999) CASPubMedPubMed Central Google Scholar
Wang, Y.-Q. et al. _S_-nitrosylation of AtSABP3 antagonises the expression of plant immunity. J. Biol. Chem.284, 2131–2137 (2009) ArticleCAS Google Scholar
Romero-Puertas, M. C. et al. _S_-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell19, 4120–4130 (2007) ArticleCAS Google Scholar
Lindermayr, C., Sell, S., Müller, B., Leister, D. & Durner, J. Redox regulation of the NPR1–TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell22, 2894–2907 (2010) ArticleCAS Google Scholar
Jaffrey, S. R., Erdjument-Bromge, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein _S_-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol.3, 193–197 (2001) ArticleCAS Google Scholar
Selemidis, S., Dusting, G. J., Peshavariya, H., Kemp-Harper, B. K. & Drummond, G. R. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by _S_-nitrosylation in human endothelial cells. Cardiovasc. Res.75, 349–358 (2007) ArticleCAS Google Scholar
Ingelman, M., Bianchi, V. & Eklund, H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 Å resolution. J. Mol. Biol.268, 147–157 (1997) ArticleCAS Google Scholar
Zhen, L., Yu, L. & Dinauer, M. C. Probing the role of the carboxyl terminus of the gp91 phox subunit of neutrophil flavocytochrome b 558 using site-directed mutagenesis. J. Biol. Chem.273, 6575–6581 (1998) ArticleCAS Google Scholar
Matthews, J. R. et al. Inhibition of NF-κβ DNA binding by nitric oxide. Nucleic Acids Res.24, 2236–2242 (1996) ArticleCAS Google Scholar
Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science284, 651–654 (1999) ArticleADSCAS Google Scholar
Yun, B.-W. et al. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J.34, 768–777 (2003) ArticleCAS Google Scholar
Aboul-Soud, M. A. M., Cook, K. & Loake, G. J. Measurement of salicylic acid by a high-performance liquid chromatography procedure based on ion-exchange. Chromatographia59, 129–133 (2004) CAS Google Scholar
Liu, L. et al. Essential roles of _S_-nitrosothiols in vascular homeostasis and endotoxic shock. Cell116, 617–628 (2004) ArticleCAS Google Scholar
Foissner, I., Wendehenne, D., Langebartels, C. & Durner, J. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J.23, 817–824 (2000) ArticleCAS Google Scholar
Whalen, M. C., Innes, R. W., Bent, A. F. & Staskawicz, B. J. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell3, 49–59 (1991) ArticleCAS Google Scholar
Dellagi, A., Brisset, M.-N., Jean-Pierre Paulin, J.-P. & Expert, D. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol. Plant Microbe Interact.11, 734–742 (1998) ArticleCAS Google Scholar
Liu, Q., Li, M., Leibham, D., Cortez, D. & Elledge, S. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol.8, 1300–1309 (1998) ArticleCAS Google Scholar
Sagi, M. & Fluhr, R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol.126, 1281–1290 (2001) ArticleCAS Google Scholar
Chen, Y. Y., Huang, Y. F., Khoo, K. H. & Meng, T. C. Mass spectrometry-based analyses for identifying and characterizing _S_-nitrosylation of protein tyrosine phosphatases. Methods42, 243–249 (2007) ArticleCAS Google Scholar
Shen, A. L. &. Kasper, C. B. Differential contribution of NADPH-cytochrome P450 oxidoreductase FAD binding site residues to flavin binding and catalysis. J. Biol. Chem.275, 41087–41091 (2000) ArticleCAS Google Scholar
Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols4, 363–371 (2009) ArticleCAS Google Scholar
Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997) ArticleCAS Google Scholar
Cole, C., Barber, J. D. & Barton, G. J. The Jpred 3 secondary structure prediction server. Nucleic Acids Res.36, W197–W201 (2008) ArticleCAS Google Scholar