Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR (original) (raw)

References

  1. Lashuel, H. A. & Lansbury, P. T. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys. 39, 167–201 (2006)
    Article CAS Google Scholar
  2. Walsh, D. M. & Selkoe, D. J. Aβ oligomers – a decade of discovery. J. Neurochem. 101, 1172–1184 (2007)
    Article CAS Google Scholar
  3. Glabe, C. G. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639–29643 (2008)
    Article CAS Google Scholar
  4. Querfurth, H. W. & LaFerla, F. M. Mechanisms of disease: Alzheimer’s disease. N. Engl. J. Med. 362, 329–344 (2010)
    Article CAS Google Scholar
  5. Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nature Struct. Mol. Biol. 17, 561–567 (2010)
    Article CAS Google Scholar
  6. Fukumoto, H. et al. High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J. 24, 2716–2726 (2010)
    Article CAS Google Scholar
  7. Petkova, A. T. et al. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002)
    Article ADS CAS Google Scholar
  8. Luhrs, T. et al. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005)
    Article ADS CAS Google Scholar
  9. Paravastu, A. K., Leapman, R. D., Yau, W. M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008)
    Article ADS CAS Google Scholar
  10. Petkova, A. T., Yau, W. M. & Tycko, R. Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45, 498–512 (2006)
    Article CAS Google Scholar
  11. Fawzi, N. L., Okabe, Y., Yap, E. H. & Head-Gordon, T. Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer’s Aβ1–40 peptide. J. Mol. Biol. 365, 535–550 (2007)
    Article CAS Google Scholar
  12. Powers, E. T. & Powers, D. L. Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys. J. 94, 379–391 (2008)
    Article ADS CAS Google Scholar
  13. Jarrett, J. T., Berger, E. P. & Lansbury, P. T., Jr The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697 (1993)
    Article CAS Google Scholar
  14. Riek, R., Guntert, P., Dobeli, H., Wipf, B. & Wuthrich, K. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ(1–40)(ox) and Aβ(1–42)(ox). Eur. J. Biochem. 268, 5930–5936 (2001)
    Article CAS Google Scholar
  15. Fawzi, N. L., Ying, J., Torchia, D. A. & Clore, G. M. Kinetics of amyloid β monomer-to-oligomer exchange by NMR relaxation. J. Am. Chem. Soc. 132, 9948–9951 (2010)
    Article CAS Google Scholar
  16. Teplow, D. B. et al. Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach. Acc. Chem. Res. 39, 635–645 (2006)
    Article CAS Google Scholar
  17. Mastrangelo, I. A. et al. High-resolution atomic force microscopy of soluble Aβ42 oligomers. J. Mol. Biol. 358, 106–119 (2006)
    Article CAS Google Scholar
  18. Pimplikar, S. W. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 41, 1261–1268 (2009)
    Article CAS Google Scholar
  19. Scheidt, H. A., Morgado, I., Rothemund, S., Huster, D. & Fandrich, M. Solid-state NMR spectroscopic investigation of Aβ protofibrils: implication of a β-sheet remodeling upon maturation into terminal amyloid fibrils. Angew. Chem. 50, 2837–2840 (2011)
    Article CAS Google Scholar
  20. Hou, L. M. et al. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126, 1992–2005 (2004)
    Article CAS Google Scholar
  21. Yan, Y. & Wang, C. Aβ42 is more rigid than Aβ40 at the C terminus: implications for Aβ aggregation and toxicity. J. Mol. Biol. 364, 853–862 (2006)
    Article CAS Google Scholar
  22. McConnell, H. M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958)
    Article ADS CAS Google Scholar
  23. Helgstrand, M., Hard, T. & Allard, P. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange. J. Biomol. NMR 18, 49–63 (2000)
    Article CAS Google Scholar
  24. Lee, J., Culyba, E. K., Powers, E. T. & Kelly, J. W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chem. Biol. 7, 602–609 (2011)
    Article CAS Google Scholar
  25. Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005)
    Article ADS CAS Google Scholar
  26. Carulla, N., Zhou, M., Giralt, E., Robinson, C. V. & Dobson, C. M. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc. Chem. Res. 43, 1072–1079 (2010)
    Article CAS Google Scholar
  27. Hansen, D. F., Vallurupalli, P. & Kay, L. E. Measurement of methyl group motional parameters of invisible, excited protein states by NMR spectroscopy. J. Am. Chem. Soc. 131, 12745–12754 (2009)
    Article CAS Google Scholar
  28. Ishima, R. & Torchia, D. A. Accuracy of optimized chemical-exchange parameters derived by fitting CPMG _R_2 dispersion profiles when _R_20a ≠ _R_20b. J. Biomol. NMR 34, 209–219 (2006)
    Article CAS Google Scholar
  29. Ruschak, A. M., Religa, T. L., Breuer, S., Witt, S. & Kay, L. E. The proteasome antechamber maintains substrates in an unfolded state. Nature 467, 868–871 (2010)
    Article ADS CAS Google Scholar
  30. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007)
    Article ADS CAS Google Scholar
  31. Sklenar, V., Torchia, D. & Bax, A. Measurement of 13C longitudinal relaxation using 1H detection. J. Magn. Reson. 73, 375–379 (1987)
    ADS CAS Google Scholar
  32. Delaglio, F. et al. NmrPipe – a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR 6, 277–293 (1995)
    Article CAS Google Scholar

Download references