Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity (original) (raw)

References

  1. Liu, L. et al. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nature Med. 16, 224–227 (2010)
    Article CAS Google Scholar
  2. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117 (2012)
    Article Google Scholar
  3. Sheridan, B. S. & Lefrançois, L. Regional and mucosal memory T cells. Nature Immunol. 131, 485–491 (2011)
    Article Google Scholar
  4. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004)
    Article CAS Google Scholar
  5. Conrad, C. et al. α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nature Med. 13, 836–842 (2007)
    Article CAS Google Scholar
  6. Bevan, M. J. Helping the CD8+ T-cell response. Nature Rev. Immunol. 4, 595–602 (2004)
    Article CAS Google Scholar
  7. Antia, R., Ganusov, V. V. & Ahmed, R. The role of models in understanding CD8+ T-cell memory. Nature Rev. Immunol. 5, 101–111 (2005)
    Article CAS Google Scholar
  8. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007)
    Article CAS Google Scholar
  9. Lefrançois, L. & Obar, J. J. Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol. Rev. 235, 206–218 (2010)
    Article Google Scholar
  10. Freyschmidt, E. J. et al. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses. J. Immunol. 185, 1295–1302 (2010)
    Article CAS Google Scholar
  11. Sanz, P. & Moss, B. Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. Proc. Natl Acad. Sci. USA 96, 2692–2697 (1999)
    Article ADS CAS Google Scholar
  12. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009)
    Article ADS CAS Google Scholar
  13. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008)
    Article ADS CAS Google Scholar
  14. Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001)
    Article ADS CAS Google Scholar
  15. Lefrançois, L. Development, trafficking, and function of memory T-cell subsets. Immunol. Rev. 211, 93–103 (2006)
    Article Google Scholar
  16. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004)
    Article CAS Google Scholar
  17. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011)
    Article ADS CAS Google Scholar
  18. Chong, B. F., Murphy, J. E., Kupper, T. S. & Fuhlbrigge, R. C. E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system. J. Immunol. 172, 1575–1581 (2004)
    Article CAS Google Scholar
  19. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000)
    Article CAS Google Scholar
  20. Jiang, X., Campbell, J. J. & Kupper, T. S. Embryonic trafficking of γδ T cells to skin is dependent on E/P selectin ligands and CCR4. Proc. Natl Acad. Sci. USA 107, 7443–7448 (2010)
    Article ADS CAS Google Scholar
  21. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009)
    Article CAS Google Scholar
  22. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010)
    Article CAS Google Scholar
  23. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010)
    Article ADS CAS Google Scholar
  24. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006)
    Article CAS Google Scholar
  25. Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE 6, e16245 (2011)
    Article ADS CAS Google Scholar
  26. Lund, J. M., Hsing, L., Pham, T. T. & Rudensky, A. Y. Coordination of early protective immunity to viral infection by regulatory T cells. Science 320, 1220–1224 (2008)
    Article ADS CAS Google Scholar
  27. Román, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002)
    Article Google Scholar
  28. Romani, L. Immunity to fungal infections. Nature Rev. Immunol. 11, 275–288 (2011)
    Article CAS Google Scholar
  29. Liu, L., Fuhlbrigge, R. C., Karibian, K., Tian, T. & Kupper, T. S. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25, 511–520 (2006)
    Article CAS Google Scholar
  30. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002)
    Article ADS CAS Google Scholar

Download references