Intrinsic coupling of lagging-strand synthesis to chromatin assembly (original) (raw)
Corpet, A. & Almouzni, G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol.19, 29–41 (2009) ArticleCAS Google Scholar
Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol.189, 189–204 (1986) ArticleCAS Google Scholar
Burgers, P. M. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem.284, 4041–4045 (2009) ArticleCAS Google Scholar
Kaufmann, G. & Falk, H. H. An oligoribonucleotide polymerase from SV40-infected cells with properties of a primase. Nucleic Acids Res.10, 2309–2321 (1982) ArticleCAS Google Scholar
Nethanel, T. & Kaufmann, G. Two DNA polymerases may be required for synthesis of the lagging DNA strand of simian virus 40. J. Virol.64, 5912–5918 (1990) CASPubMedPubMed Central Google Scholar
Waga, S. & Stillman, B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature369, 207–212 (1994) ArticleADSCAS Google Scholar
Ayyagari, R., Gomes, X. V., Gordenin, D. A. & Burgers, P. M. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 and DNA2. J. Biol. Chem.278, 1618–1625 (2003) ArticleCAS Google Scholar
Bae, S. H., Bae, K. H., Kim, J. A. & Seo, Y. S. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature412, 456–461 (2001) ArticleADSCAS Google Scholar
Kao, H. I., Veeraraghavan, J., Polaczek, P., Campbell, J. L. & Bambara, R. A. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J. Biol. Chem.279, 15014–15024 (2004) ArticleCAS Google Scholar
Garg, P., Stith, C. M., Sabouri, N., Johansson, E. & Burgers, P. M. Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev.18, 2764–2773 (2004) ArticleCAS Google Scholar
Johnston, L. H. & Nasmyth, K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature274, 891–893 (1978) ArticleADSCAS Google Scholar
Pavlov, Y. I. et al. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr. Biol.16, 202–207 (2006) ArticleCAS Google Scholar
Anderson, S. & DePamphilis, M. L. Metabolism of Okazaki fragments during simian virus 40 DNA replication. J. Biol. Chem.254, 11495–11504 (1979) CASPubMed Google Scholar
Bielinsky, A. K. & Gerbi, S. A. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science279, 95–98 (1998) ArticleADSCAS Google Scholar
Blumenthal, A. B. & Clark, E. J. Discrete sizes of replication intermediates in Drosophila cells. Cell12, 183–189 (1977) ArticleCAS Google Scholar
Dohmen, R. J. & Varshavsky, A. Heat-inducible degron and the making of conditional mutants. Methods Enzymol.399, 799–822 (2005) ArticleCAS Google Scholar
Bielinsky, A. K. & Gerbi, S. A. Chromosomal ARS1 has a single leading strand start site. Mol. Cell3, 477–486 (1999) ArticleCAS Google Scholar
Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods2, 105–111 (2005) ArticleCAS Google Scholar
Nieduszynski, C. A., Hiraga, S., Ak, P., Benham, C. J. & Donaldson, A. D. OriDB: a DNA replication origin database. Nucleic Acids Res.35, D40–D46 (2007) ArticleCAS Google Scholar
Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev.24, 748–753 (2010) ArticleCAS Google Scholar
Jiang, C. & Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol.10, R109 (2009) Article Google Scholar
Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature450, 1031–1035 (2007) ArticleADSCAS Google Scholar
Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell137, 445–458 (2009) ArticleCAS Google Scholar
Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell32, 878–887 (2008) ArticleCAS Google Scholar
MacIsaac, K. D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics7, 113 (2006) Article Google Scholar
Hall, M. A. et al. High-resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nature Struct. Mol. Biol.16, 124–129 (2009) ArticleCAS Google Scholar
Bondarenko, V. A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell24, 469–479 (2006) ArticleCAS Google Scholar
Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature469, 368–373 (2011) ArticleADSCAS Google Scholar
Bai, L., Ondracka, A. & Cross, F. R. Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol. Cell42, 465–476 (2011) ArticleCAS Google Scholar
Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell96, 575–585 (1999) ArticleCAS Google Scholar
Johansson, E., Garg, P. & Burgers, P. M. The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem.279, 1907–1915 (2004) ArticleCAS Google Scholar
Stith, C. M., Sterling, J., Resnick, M. A., Gordenin, D. A. & Burgers, P. M. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem.283, 34129–34140 (2008) ArticleCAS Google Scholar
Dong, F. & van Holde, K. E. Nucleosome positioning is determined by the (H3–H4)2 tetramer. Proc. Natl Acad. Sci. USA88, 10596–10600 (1991) ArticleADSCAS Google Scholar
Smith, S. & Stillman, B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J.10, 971–980 (1991) ArticleCAS Google Scholar
Chafin, D. R., Vitolo, J. M., Henricksen, L. A., Bambara, R. A. & Hayes, J. J. Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J.19, 5492–5501 (2000) ArticleCAS Google Scholar
Huggins, C. F. et al. Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol. Cell10, 1201–1211 (2002) ArticleCAS Google Scholar
Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell44, 928–941 (2011) ArticleCAS Google Scholar
Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408, 221–225 (2000) ArticleADSCAS Google Scholar
Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science318, 1928–1931 (2007) ArticleADSCAS Google Scholar
Hoek, M. & Stillman, B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl Acad. Sci. USA100, 12183–12188 (2003) ArticleADSCAS Google Scholar
Murakami, H., Borde, V., Nicolas, A. & Keeney, S. Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods Mol. Biol.557, 117–142 (2009) ArticleCAS Google Scholar
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature458, 362–366 (2009) ArticleADSCAS Google Scholar