Unexpected features of Drosophila circadian behavioural rhythms under natural conditions (original) (raw)
References
Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science309, 630–633 (2005) ArticleADSCAS Google Scholar
Hardin, P. E. Molecular genetic analysis of timekeeping in Drosophila . Adv. Genet.74, 141–173 (2011) ArticleCAS Google Scholar
Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol.8, 139–148 (2007) ArticleCAS Google Scholar
Helfrich-Forster, C. The locomotor activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J. Insect Physiol.47, 877–887 (2001) ArticleCAS Google Scholar
Collins, B. H., Dissel, S., Gaten, E., Rosato, E. & Kyriacou, C. P. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila . Proc. Natl Acad. Sci. USA102, 19021–19026 (2005) ArticleADSCAS Google Scholar
Grima, B., Chelot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature431, 869–873 (2004) ArticleADSCAS Google Scholar
Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila . Nature431, 862–868 (2004) ArticleADSCAS Google Scholar
Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron24, 219–230 (1999) ArticleCAS Google Scholar
Collins, B. H., Rosato, E. & Kyriacou, C. P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl Acad. Sci. USA101, 1945–1950 (2004) ArticleADSCAS Google Scholar
Low, K. H., Lim, C., Ko, H. W. & Edery, I. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron60, 1054–1067 (2008) ArticleCAS Google Scholar
Tauber, E. et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster . Science316, 1895–1898 (2007) ArticleADSCAS Google Scholar
Hamblen-Coyle, M. J., Wheeler, D. A., Rutila, J. E., Rosbash, M. & Hall, J. C. Behavior of period-altered rhythm mutants of Drosophila in light:dark cycles. J. Insect Behav.5, 417–446 (1992) Article Google Scholar
Helfrich, C. & Engelmann, W. Evidences for circadian rhythmicity in the per0 mutant of Drosophila melanogaster . Z. Naturforsch. C42, 1335–1338 (1987) ArticleCAS Google Scholar
Dowse, H. B. & Ringo, J. M. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms2, 65–76 (1987) ArticleCAS Google Scholar
Yoshii, T., Fujii, K. & Tomioka, K. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms22, 103–114 (2007) ArticleCAS Google Scholar
Currie, J., Goda, T. & Wijnen, H. Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol.7, 49 (2009) Article Google Scholar
Rieger, D. et al. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms22, 387–399 (2007) Article Google Scholar
Bachleitner, W., Kempinger, L., Wulbeck, C., Rieger, D. & Helfrich-Forster, C. Moonlight shifts the endogenous clock of Drosophila melanogaster . Proc. Natl Acad. Sci. USA104, 3538–3543 (2007) ArticleADSCAS Google Scholar
Kempinger, L., Dittmann, R., Rieger, D. & Helfrich-Forster, C. The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol. Int.26, 151–166 (2009) ArticleCAS Google Scholar
Nitabach, M. N. et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronises downstream circadian oscillators in the fly circadian circuit and induces multiple behavioural period. J. Neurosci.26, 479–489 (2006) ArticleCAS Google Scholar
Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms22, 115–126 (2007) Article Google Scholar
Yoshii, T., Vanin, S., Costa, R. & Helfrich-Forster, C. Synergic entrainment of _Drosophila_’s circadian clock by light and temperature. J. Biol. Rhythms24, 452–464 (2009) Article Google Scholar
Zhang, Y., Liu, Y., Bilodeau-Wentworth, D., Hardin, P. E. & Emery, P. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Curr. Biol.20, 600–605 (2010) ArticleCAS Google Scholar
Zhang, L. et al. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila . Curr. Biol.20, 591–599 (2010) ArticleCAS Google Scholar
Busza, A., Murad, A. & Emery, P. Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J. Neurosci.27, 10722–10733 (2007) ArticleCAS Google Scholar
Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms26, 118–129 (2011) Article Google Scholar
Gatterman, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett.4, 253–255 (2008) Article Google Scholar
Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila . Curr. Biol.14, 638–649 (2004) ArticleCAS Google Scholar
Rosato, E. & Kyriacou, C. P. Analysis of locomotor activity rhythms in Drosophila . Nature Protocols1, 559–568 (2006) Article Google Scholar