Unexpected features of Drosophila circadian behavioural rhythms under natural conditions (original) (raw)

References

  1. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005)
    Article ADS CAS Google Scholar
  2. Hardin, P. E. Molecular genetic analysis of timekeeping in Drosophila . Adv. Genet. 74, 141–173 (2011)
    Article CAS Google Scholar
  3. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007)
    Article CAS Google Scholar
  4. Helfrich-Forster, C. The locomotor activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J. Insect Physiol. 47, 877–887 (2001)
    Article CAS Google Scholar
  5. Collins, B. H., Dissel, S., Gaten, E., Rosato, E. & Kyriacou, C. P. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila . Proc. Natl Acad. Sci. USA 102, 19021–19026 (2005)
    Article ADS CAS Google Scholar
  6. Grima, B., Chelot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873 (2004)
    Article ADS CAS Google Scholar
  7. Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila . Nature 431, 862–868 (2004)
    Article ADS CAS Google Scholar
  8. Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230 (1999)
    Article CAS Google Scholar
  9. Collins, B. H., Rosato, E. & Kyriacou, C. P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl Acad. Sci. USA 101, 1945–1950 (2004)
    Article ADS CAS Google Scholar
  10. Low, K. H., Lim, C., Ko, H. W. & Edery, I. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 60, 1054–1067 (2008)
    Article CAS Google Scholar
  11. United . States Naval Observatory (USNO) Astronomy Application Department. Rise, Set, and Twilight Definitionshttp://aa.usno.navy.mil/faq/docs/RST_defs.php〉 (2011)
  12. Tauber, E. et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster . Science 316, 1895–1898 (2007)
    Article ADS CAS Google Scholar
  13. Hamblen-Coyle, M. J., Wheeler, D. A., Rutila, J. E., Rosbash, M. & Hall, J. C. Behavior of period-altered rhythm mutants of Drosophila in light:dark cycles. J. Insect Behav. 5, 417–446 (1992)
    Article Google Scholar
  14. Helfrich, C. & Engelmann, W. Evidences for circadian rhythmicity in the per 0 mutant of Drosophila melanogaster . Z. Naturforsch. C 42, 1335–1338 (1987)
    Article CAS Google Scholar
  15. Dowse, H. B. & Ringo, J. M. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms 2, 65–76 (1987)
    Article CAS Google Scholar
  16. Yoshii, T., Fujii, K. & Tomioka, K. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms 22, 103–114 (2007)
    Article CAS Google Scholar
  17. Currie, J., Goda, T. & Wijnen, H. Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol. 7, 49 (2009)
    Article Google Scholar
  18. Rieger, D. et al. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22, 387–399 (2007)
    Article Google Scholar
  19. Bachleitner, W., Kempinger, L., Wulbeck, C., Rieger, D. & Helfrich-Forster, C. Moonlight shifts the endogenous clock of Drosophila melanogaster . Proc. Natl Acad. Sci. USA 104, 3538–3543 (2007)
    Article ADS CAS Google Scholar
  20. Kempinger, L., Dittmann, R., Rieger, D. & Helfrich-Forster, C. The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol. Int. 26, 151–166 (2009)
    Article CAS Google Scholar
  21. Nitabach, M. N. et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronises downstream circadian oscillators in the fly circadian circuit and induces multiple behavioural period. J. Neurosci. 26, 479–489 (2006)
    Article CAS Google Scholar
  22. Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126 (2007)
    Article Google Scholar
  23. Yoshii, T., Vanin, S., Costa, R. & Helfrich-Forster, C. Synergic entrainment of _Drosophila_’s circadian clock by light and temperature. J. Biol. Rhythms 24, 452–464 (2009)
    Article Google Scholar
  24. Zhang, Y., Liu, Y., Bilodeau-Wentworth, D., Hardin, P. E. & Emery, P. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Curr. Biol. 20, 600–605 (2010)
    Article CAS Google Scholar
  25. Zhang, L. et al. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila . Curr. Biol. 20, 591–599 (2010)
    Article CAS Google Scholar
  26. Busza, A., Murad, A. & Emery, P. Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J. Neurosci. 27, 10722–10733 (2007)
    Article CAS Google Scholar
  27. Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129 (2011)
    Article Google Scholar
  28. Gatterman, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 4, 253–255 (2008)
    Article Google Scholar
  29. Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila . Curr. Biol. 14, 638–649 (2004)
    Article CAS Google Scholar
  30. Rosato, E. & Kyriacou, C. P. Analysis of locomotor activity rhythms in Drosophila . Nature Protocols 1, 559–568 (2006)
    Article Google Scholar

Download references