The let-7–Imp axis regulates ageing of the Drosophila testis stem-cell niche (original) (raw)

References

  1. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978)
    CAS PubMed Google Scholar
  2. Jones, D. L. & Rando, T. A. Emerging models and paradigms for stem cell ageing. Nature Cell Biol. 13, 506–512 (2011)
    Article CAS Google Scholar
  3. Voog, J. & Jones, D. L. Stem cells and the Niche: a dynamic duo. Cell Stem Cell 6, 103–115 (2010)
    Article CAS Google Scholar
  4. Fuller, M. T. in The Development of Drosophila Melanogaster (eds Bate, M. & Martinez-Arias, A. ) 71–147 (Cold Spring Harbor Laboratory Press, 1993)
    Google Scholar
  5. Boyle, M., Wong, C., Rocha, M. & Jones, D. L. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1, 470–478 (2007)
    Article CAS Google Scholar
  6. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007)
    Article CAS Google Scholar
  7. Fabrizio, J. J. et al. Imp (IGF-II mRNA-binding protein) is expressed during spermatogenesis in Drosophila melanogaster . Fly 2, 47–48 (2008)
    Article Google Scholar
  8. Yisraeli, J. K. VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol. Cell 97, 87–96 (2005)
    Article CAS Google Scholar
  9. Brand, A. H., Manoukian, A. S. & Perrimon, N. Ectopic expression in Drosophila . Methods Cell Biol. 44, 635–654 (1994)
    Article CAS Google Scholar
  10. Munro, T. P., Kwon, S., Schnapp, B. J. & St Johnston, D. A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP. J. Cell Biol. 172, 577–588 (2006)
    Article CAS Google Scholar
  11. Nabel-Rosen, H., Dorevitch, N., Reuveny, A. & Volk, T. The balance between two isoforms of the Drosophila RNA-binding protein how controls tendon cell differentiation. Mol. Cell 4, 573–584 (1999)
    Article CAS Google Scholar
  12. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010)
    Article CAS Google Scholar
  13. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006)
    Article CAS Google Scholar
  14. Elcheva, I., Goswami, S., Noubissi, F. K. & Spiegelman, V. S. CRD-BP protects the coding region of βTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell 35, 240–246 (2009)
    Article CAS Google Scholar
  15. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila . Nature 453, 798–802 (2008)
    Article ADS CAS Google Scholar
  16. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)
    Article CAS Google Scholar
  17. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009)
    Article CAS Google Scholar
  18. Golden, D. E., Gerbasi, V. R. & Sontheimer, E. J. An inside job for siRNAs. Mol. Cell 31, 309–312 (2008)
    Article CAS Google Scholar
  19. Czech, B. et al. Hierarchical rules for Argonaute loading in Drosophila . Mol. Cell 36, 445–456 (2009)
    Article CAS Google Scholar
  20. Geng, C. & Macdonald, P. M. Imp associates with squid and Hrp48 and contributes to localized expression of gurken in the oocyte. Mol. Cell. Biol. 26, 9508–9516 (2006)
    Article CAS Google Scholar
  21. Wang, L. & Jones, D. L. The effects of aging on stem cell behavior in Drosophila . Exp. Gerontol. 46, 340–344 (2010)
    Article Google Scholar
  22. Boyerinas, B. et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587–2591 (2008)
    Article CAS Google Scholar
  23. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135, 227–239 (2008)
    Article CAS Google Scholar
  24. Zhao, C. et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc. Natl Acad. Sci. USA 107, 1876–1881 (2010)
    Article ADS CAS Google Scholar
  25. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007)
    Article CAS Google Scholar
  26. Chen, C. et al. Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm. Genome 18, 316–327 (2007)
    Article CAS Google Scholar
  27. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R. & Wulczyn, F. G. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008)
    Article CAS Google Scholar
  28. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010)
    Article ADS CAS Google Scholar
  29. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009)
    Article CAS Google Scholar
  30. Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E. & Peter, M. E. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17, F19–F36 (2010)
    Article CAS Google Scholar
  31. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011)
    Article CAS Google Scholar
  32. Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S. & Carthew, R. W. A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009)
    Article CAS Google Scholar
  33. Boylan, K. L. et al. Motility screen identifies Drosophila IGF-II mRNA-binding protein–zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet. 4, e36 (2008)
    Article Google Scholar
  34. Kitadate, Y. et al. Boss/Sev signaling from germline to soma restricts germline-stem-cell-niche formation in the anterior region of Drosophila male gonads. Dev. Cell 13, 151–159 (2007)
    Article CAS Google Scholar
  35. Sokol, N. S. et al. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008)
    Article CAS Google Scholar
  36. Caldwell, J. C., Fineberg, S. K. & Eberl, D. F. reduced ocelli encodes the leucine rich repeat protein Pray For Elves in Drosophila melanogaster . Fly 1, 146–152 (2007)
    Article Google Scholar
  37. Hime, G. R., Brill, J. A. & Fuller, M. T. Assembly of ring canals in the male germ line from structural components of the contractile ring. J. Cell Sci. 109, 2779–2788 (1996)
    CAS PubMed Google Scholar
  38. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev. 12, 3252–3263 (1998)
    Article CAS Google Scholar
  39. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994)
    CAS PubMed Google Scholar
  40. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nature Protocols 3, 1101–1108 (2008)
    Article CAS Google Scholar
  41. Min, K. J., Yamamoto, R., Buch, S., Pankratz, M. & Tatar, M. Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7, 199–206 (2008)
    Article CAS Google Scholar
  42. Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N., Jr Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85 (2006)
    Article Google Scholar
  43. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila . Cell 128, 1089–1103 (2007)
    Article CAS Google Scholar
  44. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004)
    Article CAS Google Scholar
  45. Haley, B., Foys, B. & Levine, M. Vectors and parameters that enhance the efficacy of RNAi-mediated gene disruption in transgenic Drosophila . Proc. Natl Acad. Sci. USA 107, 11435–11440 (2010)
    Article ADS CAS Google Scholar

Download references