Tarkowski, A. K. Experiments on the development of isolated blastomers of mouse eggs. Nature184, 1286–1287 (1959) ArticleADSCAS Google Scholar
Papaioannou, V. E., Mkandawire, J. & Biggers, J. D. Development and phenotypic variability of genetically identical half mouse embryos. Development106, 817–827 (1989) CASPubMed Google Scholar
Cockburn, K. & Rossant, J. Making the blastocyst: lessons from the mouse. J. Clin. Invest.120, 995–1003 (2010) ArticleCAS Google Scholar
Latham, K. E. & Schultz, R. M. Embryonic genome activation. Front. Biosci.6, d748–d759 (2001) ArticleCAS Google Scholar
Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update8, 323–331 (2002) ArticleCAS Google Scholar
Kan?ka, J. Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology59, 3–19 (2003) ArticleCAS Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981) ArticleADSCAS Google Scholar
Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78, 7634–7638 (1981) ArticleADSCAS Google Scholar
Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development105, 733–737 (1989) CAS Google Scholar
Niakan, K. K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev.24, 312–326 (2010) ArticleCAS Google Scholar
Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell3, 391–401 (2008) ArticleCAS Google Scholar
Singh, A. M., Hamazaki, T., Hankowski, K. E. & Terada, N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells25, 2534–2542 (2007) ArticleCAS Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230–1234 (2007) ArticleADSCAS Google Scholar
Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature464, 858–863 (2010) ArticleADSCAS Google Scholar
Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell7, 597–606 (2004) ArticleCAS Google Scholar
Evsikov, A. V. et al. Systems biology of the 2-cell mouse embryo. Cytogenet. Genome Res.105, 240–250 (2004) ArticleCAS Google Scholar
Kigami, D., Minami, N., Takayama, H. & Imai, H. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod.68, 651–654 (2003) ArticleCAS Google Scholar
Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol.269, 276–285 (2004) ArticleCAS Google Scholar
Ribet, D. et al. Murine endogenous retrovirus MuERV-L is the progenitor of the “orphan” epsilon viruslike particles of the early mouse embryo. J. Virol.82, 1622–1625 (2008) ArticleCAS Google Scholar
Soudais, C. et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro . Development121, 3877–3888 (1995) CASPubMed Google Scholar
Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development134, 3827–3836 (2007) ArticleCAS Google Scholar
Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev.125, 270–283 (2008) ArticleCAS Google Scholar
Choo, K. B., Chen, H. H., Cheng, W. T., Chang, H. S. & Wang, M. In silico mining of EST databases for novel pre-implantation embryo-specific zinc finger protein genes. Mol. Reprod. Dev.59, 249–255 (2001) ArticleCAS Google Scholar
Huang, C. J., Chen, C. Y., Chen, H. H., Tsai, S. F. & Choo, K. B. TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene324, 117–127 (2004) ArticleCAS Google Scholar
Zhang, W. et al. Zfp206 regulates ES cell gene expression and differentiation. Nucleic Acids Res.34, 4780–4790 (2006) ArticleCAS Google Scholar
Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature453, 519–523 (2008) ArticleADSCAS Google Scholar
Ma, J., Svoboda, P., Schultz, R. M. & Stein, P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol. Reprod.64, 1713–1721 (2001) ArticleCAS Google Scholar
Wiekowski, M., Miranda, M., Nothias, J. Y. & DePamphilis, M. L. Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription. J. Cell Sci.110, 1147–1158 (1997) CASPubMed Google Scholar
Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev.25, 594–607 (2011) ArticleCAS Google Scholar
Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature463, 237–240 (2010) ArticleADSCAS Google Scholar
Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl Acad. Sci. USA106, 19363–19368 (2009) ArticleADSCAS Google Scholar
Suzuki, T., Minami, N., Kono, T. & Imai, H. Zygotically activated genes are suppressed in mouse nuclear transferred embryos. Cloning Stem Cells8, 295–304 (2006) ArticleCAS Google Scholar
Shao, G. B. et al. Effect of trychostatin A treatment on gene expression in cloned mouse embryos. Theriogenology71, 1245–1252 (2009) ArticleCAS Google Scholar
Li, W. et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells27, 2992–3000 (2009) CASPubMedPubMed Central Google Scholar
Hirata, T. et al. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Sci. Rep.2, 208 (2012) Article Google Scholar
Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet.9, 397–405 (2008) ArticleCAS Google Scholar
Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genet.42, 631–634 (2010) ArticleCAS Google Scholar
Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nature Genet.43, 1154–1159 (2011) ArticleCAS Google Scholar
Dupressoir, A. et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl Acad. Sci. USA106, 12127–12132 (2009) ArticleADSCAS Google Scholar
Bénit, L., Lallemand, J. B., Casella, J. F., Philippe, H. & Heidmann, T. ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J. Virol.73, 3301–3308 (1999) PubMedPubMed Central Google Scholar
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol.11, R106 (2010) ArticleCAS Google Scholar
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols4, 44–57 (2009) Article Google Scholar