Serine is a natural ligand and allosteric activator of pyruvate kinase M2 (original) (raw)

References

  1. Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer 10, 267–277 (2010)
    Article CAS Google Scholar
  2. Chaneton, B. & Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309–316 (2012)
    Article CAS Google Scholar
  3. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008)
    Article ADS CAS Google Scholar
  4. Altenberg, B. & Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84, 1014–1020 (2004)
    Article CAS Google Scholar
  5. Mazurek, S., Boschek, C. B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. 15, 300–308 (2005)
    Article CAS Google Scholar
  6. Yamada, K. & Noguchi, T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem. J. 337, 1–11 (1999)
    Article CAS Google Scholar
  7. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011)
    Article ADS CAS Google Scholar
  8. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011)
    Article CAS Google Scholar
  9. Pollari, S. et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421–430 (2011)
    Article CAS Google Scholar
  10. Vander Heiden, M. G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010)
    Article ADS CAS Google Scholar
  11. Dombrauckas, J. D., Santarsiero, B. D. & Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)
    Article CAS Google Scholar
  12. Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)
    Article Google Scholar
  13. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)
    Article ADS CAS Google Scholar
  14. Ashizawa, K., Willingham, M. C., Liang, C. M. & Cheng, S. Y. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J. Biol. Chem. 266, 16842–16846 (1991)
    CAS PubMed Google Scholar
  15. Spellman, C. M. & Fottrell, P. F. Similarities between pyruvate kinase from human placenta and tumours. FEBS Lett. 37, 281–284 (1973)
    Article CAS Google Scholar
  16. Eigenbrodt, E., Leib, S., Kramer, W., Friis, R. R. & Schoner, W. Structural and kinetic differences between the M2 type pyruvate kinases from lung and various tumors. Biomed. Biochim. Acta 42, S278–S282 (1983)
    CAS PubMed Google Scholar
  17. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012)
    Article ADS CAS Google Scholar
  18. Davies, T. G. & Tickle, I. J. Fragment screening using X-ray crystallography. Top. Curr. Chem. 317, 33–59 (2012)
    Article CAS Google Scholar
  19. Allali-Hassani, A. et al. A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity. Biochem. J. 424, 15–26 (2009)
    Article CAS Google Scholar
  20. Medina, M. A., Marquez, J. & Nunez de Castro, I. Interchange of amino acids between tumor and host. Biochem. Med. Metab. Biol. 48, 1–7 (1992)
    Article CAS Google Scholar
  21. Márquez, J., Sanchez-Jimenez, F., Medina, M. A., Quesada, A. R. & Nunez de Castro, I. Nitrogen metabolism in tumor bearing mice. Arch. Biochem. Biophys. 268, 667–675 (1989)
    Article Google Scholar
  22. Mattevi, A., Bolognesi, M. & Valentini, G. The allosteric regulation of pyruvate kinase. FEBS Lett. 389, 15–19 (1996)
    Article CAS Google Scholar
  23. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)
    Article ADS CAS Google Scholar
  24. de Koning, T. J. et al. l-serine in disease and development. Biochem. J. 371, 653–661 (2003)
    Article CAS Google Scholar
  25. Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A 1147, 153–164 (2007)
    Article CAS Google Scholar
  26. Salituro, F. G. & Saunders, J. O. Therapeutic compositions and related methods of use. PTC patent application WO/2010/118063. (2010)
  27. Boxer, M. B. et al. Evaluation of substituted N,_N_′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048–1055 (2010)
    Article CAS Google Scholar
  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  29. Mooij, W. T. et al. Automated protein-ligand crystallography for structure-based drug design. Chem Med Chem 1, 827–838 (2006)
    Article CAS Google Scholar
  30. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992)
    Article ADS Google Scholar
  31. Diederichs, K. & Karplus, P. A. Improved R factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997)
    Article CAS Google Scholar
  32. Weiss, M. S. & Hilgenfeld, R. On the use of the merging R factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203–205 (1997)
    Article CAS Google Scholar
  33. Weiss, M. S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001)
    Article CAS Google Scholar
  34. Pedrioli, P. G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnol. 22, 1459–1466 (2004)
    Article CAS Google Scholar
  35. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)
    Article CAS Google Scholar
  36. Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008)
    Article Google Scholar
  37. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006)
    Article CAS Google Scholar
  38. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996)
    Article ADS CAS Google Scholar
  39. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. & Breitling, R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal. Chem. 83, 2786–2793 (2011)
    Article CAS Google Scholar

Download references