Serine is a natural ligand and allosteric activator of pyruvate kinase M2 (original) (raw)
References
Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer10, 267–277 (2010) ArticleCAS Google Scholar
Chaneton, B. & Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci.37, 309–316 (2012) ArticleCAS Google Scholar
Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452, 230–233 (2008) ArticleADSCAS Google Scholar
Altenberg, B. & Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics84, 1014–1020 (2004) ArticleCAS Google Scholar
Mazurek, S., Boschek, C. B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol.15, 300–308 (2005) ArticleCAS Google Scholar
Yamada, K. & Noguchi, T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem. J.337, 1–11 (1999) ArticleCAS Google Scholar
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature476, 346–350 (2011) ArticleADSCAS Google Scholar
Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet.43, 869–874 (2011) ArticleCAS Google Scholar
Pollari, S. et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat.125, 421–430 (2011) ArticleCAS Google Scholar
Vander Heiden, M. G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science329, 1492–1499 (2010) ArticleADSCAS Google Scholar
Dombrauckas, J. D., Santarsiero, B. D. & Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry44, 9417–9429 (2005) ArticleCAS Google Scholar
Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal.2, ra73 (2009) Article Google Scholar
Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature452, 181–186 (2008) ArticleADSCAS Google Scholar
Ashizawa, K., Willingham, M. C., Liang, C. M. & Cheng, S. Y. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J. Biol. Chem.266, 16842–16846 (1991) CASPubMed Google Scholar
Spellman, C. M. & Fottrell, P. F. Similarities between pyruvate kinase from human placenta and tumours. FEBS Lett.37, 281–284 (1973) ArticleCAS Google Scholar
Eigenbrodt, E., Leib, S., Kramer, W., Friis, R. R. & Schoner, W. Structural and kinetic differences between the M2 type pyruvate kinases from lung and various tumors. Biomed. Biochim. Acta42, S278–S282 (1983) CASPubMed Google Scholar
Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA109, 6904–6909 (2012) ArticleADSCAS Google Scholar
Davies, T. G. & Tickle, I. J. Fragment screening using X-ray crystallography. Top. Curr. Chem.317, 33–59 (2012) ArticleCAS Google Scholar
Allali-Hassani, A. et al. A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity. Biochem. J.424, 15–26 (2009) ArticleCAS Google Scholar
Medina, M. A., Marquez, J. & Nunez de Castro, I. Interchange of amino acids between tumor and host. Biochem. Med. Metab. Biol.48, 1–7 (1992) ArticleCAS Google Scholar
Márquez, J., Sanchez-Jimenez, F., Medina, M. A., Quesada, A. R. & Nunez de Castro, I. Nitrogen metabolism in tumor bearing mice. Arch. Biochem. Biophys.268, 667–675 (1989) Article Google Scholar
Mattevi, A., Bolognesi, M. & Valentini, G. The allosteric regulation of pyruvate kinase. FEBS Lett.389, 15–19 (1996) ArticleCAS Google Scholar
Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science334, 1278–1283 (2011) ArticleADSCAS Google Scholar
de Koning, T. J. et al. l-serine in disease and development. Biochem. J.371, 653–661 (2003) ArticleCAS Google Scholar
Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A1147, 153–164 (2007) ArticleCAS Google Scholar
Salituro, F. G. & Saunders, J. O. Therapeutic compositions and related methods of use. PTC patent application WO/2010/118063. (2010)
Boxer, M. B. et al. Evaluation of substituted N,_N_′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem.53, 1048–1055 (2010) ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Mooij, W. T. et al. Automated protein-ligand crystallography for structure-based drug design. Chem Med Chem1, 827–838 (2006) ArticleCAS Google Scholar
Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature355, 472–475 (1992) ArticleADS Google Scholar
Diederichs, K. & Karplus, P. A. Improved R factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol.4, 269–275 (1997) ArticleCAS Google Scholar
Weiss, M. S. & Hilgenfeld, R. On the use of the merging R factor as a quality indicator for X-ray data. J. Appl. Crystallogr.30, 203–205 (1997) ArticleCAS Google Scholar
Weiss, M. S. Global indicators of X-ray data quality. J. Appl. Crystallogr.34, 130–135 (2001) ArticleCAS Google Scholar
Pedrioli, P. G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnol.22, 1459–1466 (2004) ArticleCAS Google Scholar
Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics24, 2534–2536 (2008) ArticleCAS Google Scholar
Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics9, 504 (2008) Article Google Scholar
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78, 779–787 (2006) ArticleCAS Google Scholar
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom.31, 255–262 (1996) ArticleADSCAS Google Scholar
Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. & Breitling, R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal. Chem.83, 2786–2793 (2011) ArticleCAS Google Scholar