Resurrection of endogenous retroviruses in antibody-deficient mice (original) (raw)
Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol.30, 759–795 (2012) CASPubMedPubMed Central Google Scholar
Stoye, J. P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nature Rev. Microbiol.10, 395–406 (2012) ADSCAS Google Scholar
Stoye, J. P. & Coffin, J. M. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J. Virol.61, 2659–2669 (1987) CASPubMedPubMed Central Google Scholar
King, S. R., Berson, B. J. & Risser, R. Mechanism of interaction between endogenous ecotropic murine leukemia viruses in (BALB/c × C57BL/6) hybrid cells. Virology162, 1–11 (1988) CASPubMed Google Scholar
DeFranco, A. L., Rookhuizen, D. C. & Hou, B. Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol. Rev.247, 64–72 (2012) PubMedPubMed Central Google Scholar
Kirkland, D. et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity36, 228–238 (2012) CASPubMedPubMed Central Google Scholar
Li, M., Huang, X., Zhu, Z. & Gorelik, E. Sequence and insertion sites of murine melanoma-associated retrovirus. J. Virol.73, 9178–9186 (1999) CASPubMedPubMed Central Google Scholar
Pothlichet, J., Mangeney, M. & Heidmann, T. Mobility and integration sites of a murine C57BL/6 melanoma endogenous retrovirus involved in tumor progression in vivo. Int. J. Cancer119, 1869–1877 (2006) CASPubMed Google Scholar
Stoye, J. P., Moroni, C. & Coffin, J. M. Virological events leading to spontaneous AKR thymomas. J. Virol.65, 1273–1285 (1991) CASPubMedPubMed Central Google Scholar
Young, G. R. et al. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral infection. PLoS Pathog.8, e1002709 (2012) CASPubMedPubMed Central Google Scholar
Melamedoff, M., Lilly, F. & Duran-Reynals, M. L. Suppression of endogenous murine leukemia virus by maternal resistance factor. J. Exp. Med.158, 506–514 (1983) CASPubMed Google Scholar
Stoye, J. P. & Moroni, C. Endogenous retrovirus expression in stimulated murine lymphocytes. J. Exp. Med.157, 1660–1674 (1983) CASPubMed Google Scholar
Kozak, C. A. & Rowe, W. P. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains. J. Exp. Med.152, 219–228 (1980) CASPubMed Google Scholar
McCubrey, J. & Risser, R. Genetic interactions in induction of endogenous murine leukemia virus from low leukemic mice. Cell28, 881–888 (1982) CASPubMed Google Scholar
Moroni, C. & Schumann, G. Lipopolysaccharide induces C-type virus in short term cultures of BALB/c spleen cells. Nature254, 60–61 (1975) ADSCASPubMed Google Scholar
Greenberger, J. S., Phillips, S. M., Stephenson, J. R. & Aaronson, S. A. Induction of mouse type-C RNA virus by lipopolysaccharide. J. Immunol.115, 317–320 (1975) CASPubMed Google Scholar
Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science326, 257–263 (2009) ADSCASPubMedPubMed Central Google Scholar
Lim, A. et al. Antibody and B-cell responses may control circulating lipopolysaccharide in patients with HIV infection. AIDS25, 1379–1383 (2011) CASPubMed Google Scholar
Reid, R. R. et al. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J. Immunol.159, 970–975 (1997) CASPubMed Google Scholar
Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nature Med.17, 1585–1593 (2011) CASPubMed Google Scholar
Wu, L. et al. Chronic acid water feeding protects mice against lethal gut-derived sepsis due to Pseudomonas aeruginosa. Curr. Issues Intest. Microbiol.7, 19–28 (2006) CASPubMed Google Scholar
Belancio, V. P., Roy-Engel, A. M. & Deininger, P. L. All y’all need to know ’bout retroelements in cancer. Semin. Cancer Biol.20, 200–210 (2010) CASPubMedPubMed Central Google Scholar
Romanish, M. T., Cohen, C. J. & Mager, D. L. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin. Cancer Biol.20, 246–253 (2010) CASPubMed Google Scholar
Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nature Med.16, 571–579 (2010) CASPubMed Google Scholar
Bannert, N. & Kurth, R. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl Acad. Sci. USA101, 14572–14579 (2004) ADSCASPubMedPubMed Central Google Scholar
Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol.30, 677–706 (2012) CASPubMed Google Scholar
Park, M. A. et al. Common variable immunodeficiency: a new look at an old disease. Lancet372, 489–502 (2008) PubMed Google Scholar
Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell68, 869–877 (1992) CASPubMed Google Scholar
Philpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor αβ-expressing cells. Science256, 1448–1452 (1992) ADSCASPubMed Google Scholar
Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell72, 337–348 (1993) CASPubMed Google Scholar
Cosgrove, D. et al. Mice lacking MHC class II molecules. Cell66, 1051–1066 (1991) CASPubMed Google Scholar
Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature350, 423–426 (1991) ADSCASPubMed Google Scholar
Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature334, 676–682 (1988) ADSCASPubMed Google Scholar
Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity9, 143–150 (1998) CASPubMed Google Scholar
Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature420, 324–329 (2002) ADSCASPubMed Google Scholar
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science301, 640–643 (2003) ADSCASPubMed Google Scholar
Young, G. R. et al. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral infection. PLoS Pathog.8, e1002709 (2012) CASPubMedPubMed Central Google Scholar
Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA101, 5598–5603 (2004) ADSCASPubMedPubMed Central Google Scholar
Hou, B., Reizis, B. & DeFranco, A. L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity29, 272–282 (2008) CASPubMedPubMed Central Google Scholar
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature408, 740–745 (2000) ADSCASPubMed Google Scholar
Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunol.3, 196–200 (2002) CAS Google Scholar
Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol.5, 647–656 (1993) CASPubMed Google Scholar
Harriman, G. R. et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol.162, 2521–2529 (1999) CASPubMed Google Scholar
Uren, T. K. et al. Role of the polymeric Ig receptor in mucosal B cell homeostasis. J. Immunol.170, 2531–2539 (2003) CASPubMed Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000) CASPubMed Google Scholar
Yoshinobu, K. et al. Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. J. Immunol.182, 8094–8103 (2009) CASPubMed Google Scholar
Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell8, 676–687 (2011) CASPubMedPubMed Central Google Scholar
Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev.25, 594–607 (2011) CASPubMedPubMed Central Google Scholar
Jurka, J. et al. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res.110, 462–467 (2005) CASPubMed Google Scholar
Wang, J. et al. dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum. Mutat.27, 323–329 (2006) ADSPubMedPubMed Central Google Scholar
Jern, P., Stoye, J. P. & Coffin, J. M. Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. PLoS Genet.3, e183 (2007) PubMed Central Google Scholar
Bromham, L., Clark, F. & McKee, J. J. Discovery of a novel murine type C retrovirus by data mining. J. Virol.75, 3053–3057 (2001) CASPubMedPubMed Central Google Scholar
Lötscher, M. et al. Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS ONE2, e1158 (2007) ADSPubMedPubMed Central Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.30, 3059–3066 (2002) CASPubMedPubMed Central Google Scholar
Martin, D. P. et al. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics26, 2462–2463 (2010) CASPubMedPubMed Central Google Scholar
Evans, L. H. et al. A neutralizable epitope common to the envelope glycoproteins of ecotropic, polytropic, xenotropic, and amphotropic murine leukemia viruses. J. Virol.64, 6176–6183 (1990) CASPubMedPubMed Central Google Scholar
Bock, M., Bishop, K. N., Towers, G. & Stoye, J. P. Use of a transient assay for studying the genetic determinants of Fv1 restriction. J. Virol.74, 7422–7430 (2000) CASPubMedPubMed Central Google Scholar