A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge (original) (raw)

References

  1. McGuire, J. T. & Botvinick, M. M. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc. Natl Acad. Sci. USA 107, 7922–7926 (2010)
    Article ADS CAS Google Scholar
  2. Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J. & Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56, 129–140 (2004)
    Article Google Scholar
  3. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999)
    CAS PubMed Google Scholar
  4. Maes, M. & Meltzer, H. In Psychopharmacology: the Fourth Generation of Progress (eds Bloom, F. E. & Kupfer, D. J. ) 933–944 (Raven Press, 1995)
    Google Scholar
  5. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6, 168–176 (2007)
    PubMed PubMed Central Google Scholar
  6. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)
    Article CAS Google Scholar
  7. Fuster, J. M. The Prefrontal Cortex, Fourth Edition (Academic Press, 2008)
    Google Scholar
  8. Elliott, R. et al. Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol. Med. 27, 931–942 (1997)
    Article CAS Google Scholar
  9. Austin, M.-P. Cognitive deficits in depression: possible implications for functional neuropathology. Br. J. Psychiatry 178, 200–206 (2001)
    Article CAS Google Scholar
  10. Ingram, R. E., Bernet, C. Z. & McLaughlin, S. C. Attentional allocation processes in individuals at risk for depression. Cognit. Ther. Res. 18, 317–332 (1994)
    Article Google Scholar
  11. Dalgleish, T. & Watts, F. N. Biases of attention and memory in disorders of anxiety and depression. Clin. Psychol. Rev. 10, 589–604 (1990)
    Article Google Scholar
  12. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005)
    Article CAS Google Scholar
  13. Hamani, C. et al. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol. Psychiatry 67, 117–124 (2010)
    Article Google Scholar
  14. Covington, H. E. et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30, 16082–16090 (2010)
    Article CAS Google Scholar
  15. Amat, J. et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neurosci. 8, 365–371 (2005)
    Article CAS Google Scholar
  16. Drevets, W. C. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240–249 (2001)
    Article CAS Google Scholar
  17. Baxter, L. R. et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry 46, 243–250 (1989)
    Article CAS Google Scholar
  18. Porsolt, R. D., Le Pichon, M. & Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732 (1977)
    Article ADS CAS Google Scholar
  19. Cryan, J. F., Valentino, R. J. & Lucki, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev. 29, 547–569 (2005)
    Article CAS Google Scholar
  20. Willner, P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90–110 (2005)
    Article CAS Google Scholar
  21. Vertes, R. P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32–58 (2004)
    Article CAS Google Scholar
  22. Gonçalves, L., Nogueira, M. I., Shammah-Lagnado, S. J. & Metzger, M. Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Res. Bull. 78, 240–247 (2009)
    Article Google Scholar
  23. Celada, P., Puig, M. V., Casanovas, J. M., Guillazo, G. & Artigas, F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21, 9917–9929 (2001)
    Article CAS Google Scholar
  24. Gabbott, P. L. A., Warner, T. A., Jays, P. R. L., Salway, P. & Busby, S. J. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol. 492, 145–177 (2005)
    Article Google Scholar
  25. Kim, U. & Lee, T. Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur. J. Neurosci. 35, 1253–1269 (2012)
    Article Google Scholar
  26. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nature Neurosci. 12, 77–84 (2009)
    Article CAS Google Scholar
  27. Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11 (2010)
    Article Google Scholar

Download references

Acknowledgements

We would like to thank H. Mayberg, R. Malenka, L. Gunaydin, J. Mattis, I. Ellwood and I. Witten for helpful comments on the manuscript; I. Ellwood, I. Witten, R. Airan, L. Meltzer, M. Roy, V. Gradinaru, A. Andalman, T. Davidson, R. Durand, M. Bower and M. Carr for useful discussions; and all members of the K.D. laboratory for their support. We are grateful to S. Pak, C. Ramakrishnan and C. Perry for technical assistance. This work was supported by the Wiegers Family Fund (K.D.), NARSAD (M.R.W. and K.R.T.), Stanford Graduate Fellowship (A.S.), Samsung Scholarship (S.-Y.K.), Berry Foundation Fellowship (A.A.), NIMH (1F32MH088010-01, K.M.T.), and NIMH, NIDA, the DARPA REPAIR Program, the Keck Foundation, the McKnight Foundation, the Yu, Snyder, Tarlton and Alice Woo Foundations, and the Gatsby Charitable Foundation (K.D.).

Author information

Authors and Affiliations

  1. Department of Bioengineering, Stanford University, Stanford, 94305, California, USA
    Melissa R. Warden, Aslihan Selimbeyoglu, Julie J. Mirzabekov, Kimberly R. Thompson, Sung-Yon Kim, Avishek Adhikari, Kay M. Tye & Karl Deisseroth
  2. Neurosciences Program, Stanford University, Stanford, 94305, California, USA
    Aslihan Selimbeyoglu, Sung-Yon Kim & Karl Deisseroth
  3. Bio-X Program, Stanford University, Stanford, 94305, California, USA
    Maisie Lo
  4. Department of Brain & Cognitive Sciences, Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
    Kay M. Tye
  5. Department of Physiology, University of California San Francisco, San Francisco, 94143, California, USA
    Loren M. Frank
  6. W.M. Keck Center for Integrative Neuroscience, University of California San Francisco, San Francisco, 94143, California, USA
    Loren M. Frank
  7. Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, 94305, California, USA
    Karl Deisseroth
  8. CNC Program, Stanford University, Stanford, 94305, California, USA
    Karl Deisseroth
  9. Howard Hughes Medical Institute, Stanford University, Stanford, 94305, California, USA
    Karl Deisseroth

Authors

  1. Melissa R. Warden
    You can also search for this author inPubMed Google Scholar
  2. Aslihan Selimbeyoglu
    You can also search for this author inPubMed Google Scholar
  3. Julie J. Mirzabekov
    You can also search for this author inPubMed Google Scholar
  4. Maisie Lo
    You can also search for this author inPubMed Google Scholar
  5. Kimberly R. Thompson
    You can also search for this author inPubMed Google Scholar
  6. Sung-Yon Kim
    You can also search for this author inPubMed Google Scholar
  7. Avishek Adhikari
    You can also search for this author inPubMed Google Scholar
  8. Kay M. Tye
    You can also search for this author inPubMed Google Scholar
  9. Loren M. Frank
    You can also search for this author inPubMed Google Scholar
  10. Karl Deisseroth
    You can also search for this author inPubMed Google Scholar

Contributions

M.R.W., L.M.F. and K.D. contributed to study design with assistance from A.S. and K.M.T. M.R.W., L.M.F. and K.D. contributed to data interpretation and manuscript revision. M.R.W., A.S., K.M.T., J.J.M., M.L., K.R.T., S-Y.K. and A.A. contributed to data collection. M.R.W. coordinated all experiments, developed the induction coil and forced swim test electrophysiology methods, and performed all behavioural and in vivo electrophysiology analyses. K.D. supervised all aspects of the project. M.R.W and K.D. wrote the paper.

Corresponding authors

Correspondence toMelissa R. Warden or Karl Deisseroth.

Ethics declarations

Competing interests

M.R.W. and K.D. have disclosed these findings to the Stanford Office of Technology Licensing, which has filed a patent application for the possible use of the findings and methods in identifying new treatments for depression. All materials, methods and reagents remain freely available for academic and non-profit research in perpetuity through the Deisseroth optogenetics website (http://www.optogenetics.org).

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Figures 1-13 and additional references. (PDF 26374 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Warden, M., Selimbeyoglu, A., Mirzabekov, J. et al. A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge.Nature 492, 428–432 (2012). https://doi.org/10.1038/nature11617

Download citation