The global diversity of birds in space and time (original) (raw)

References

  1. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007)
    Article Google Scholar
  2. Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004)
    Article Google Scholar
  3. Linder, H. P. Plant species radiations: where, when, why? Phil. Trans. R. Soc. B 363, 3097–3105 (2008)
    Article Google Scholar
  4. Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012)
    Article CAS Google Scholar
  5. Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009)
    Article ADS CAS Google Scholar
  6. Smith, S. A., Beaulieu, J. M., Stamatakis, A. & Donoghue, M. J. Understanding angiosperm diversification using small and large phylogenetic trees. Am. J. Bot. 98, 404–414 (2011)
    Article Google Scholar
  7. Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007)
    Article ADS CAS Google Scholar
  8. Nee, S., Mooers, A. O. & Harvey, P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc. Natl Acad. Sci. USA 89, 8322–8326 (1992)
    Article ADS CAS Google Scholar
  9. Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biol. 6, e71 (2008)
    Article Google Scholar
  10. Rabosky, D. L. & Lovette, I. J. Density-dependent diversification in North American wood warblers. Proc. R. Soc. B 275, 2363–2371 (2008)
    Article Google Scholar
  11. Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 60, 842–855 (2006)
    Article Google Scholar
  12. Sibley, C. G. & Ahlquist, J. E. Phylogeny and Classification of Birds: a Study in Molecular Evolution (Yale Univ. Press, 1990)
    Google Scholar
  13. Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006)
    Article Google Scholar
  14. Cardillo, M., Orme, C. D. L. & Owens, I. P. F. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86, 2278–2287 (2005)
    Article Google Scholar
  15. Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007)
    Article ADS CAS Google Scholar
  16. Price, T., Lovette, I. J., Bermingham, E., Gibbs, H. L. & Richman, A. D. The imprint of history on communities of North American and Asian warblers. Am. Nat. 156, 354–367 (2000)
    Article Google Scholar
  17. Grant, P. R. & Grant, B. R. How and Why Species Multiply: the Radiation of Darwin’s Finches (Princeton Univ. Press, 2011)
    Google Scholar
  18. Moyle, R. G., Filardi, C. E., Smith, C. E. & Diamond, J. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc. Natl Acad. Sci. USA 106, 1863–1868 (2009)
    Article ADS CAS Google Scholar
  19. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953)
    Book Google Scholar
  20. Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B 279, 1300–1309 (2012)
    Article Google Scholar
  21. Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011)
    Article ADS CAS Google Scholar
  22. Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011)
    Article ADS CAS Google Scholar
  23. Derryberry, E. P. et al. Large-scale continental radiation: the neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011)
    Article Google Scholar
  24. Ericson, P. G. P. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J. Biogeogr. 39, 813–824 (2012)
    Article Google Scholar
  25. Price, T. Speciation in Birds (Roberts, 2008)
    Google Scholar
  26. Cusimano, N. & Renner, S. S. Slowdowns in diversification rates from real phylogenies may not be real. Syst. Biol. 59, 458–464 (2010)
    Article Google Scholar
  27. Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008)
    Article ADS CAS Google Scholar
  28. Rabosky, D. L. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol. Bioinform. Online 2, 247–250 (2006)
    Article Google Scholar
  29. Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011)
    Article ADS CAS Google Scholar
  30. Redding, D. W. & Mooers, A. O. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 1670–1678 (2006)
    Article Google Scholar

Download references

Acknowledgements

We thank D. Redding for critical input in the early stages of this project; A. Mimoto, F. Ronqvist and M. Teslenko for help modifying MrBayes; I. Martyn for coding; R. Bowie, J. McGuire, A. Cooper, K. Burns and M. Sorenson among others, for unpublished phylogenetic material or information; M. Benton, T. Ezard, T. Price, M. Donoghue, J. Beaulieu, J. Belmaker, P. M. Hull, D. Field, N. Longrich, V. Saranathan, M. Steel, H. Morlon, J. Brown, A. Phillimore, R. Fitzjohn, R. Etienne, W. Stein and especially T. Stadler for data, important input and/or discussion; G. Smith, C. Schank, D. Thiele, T. M. Lee, F. La Sorte, C. Edwards, K. Ashton and J. Hazelhurst for help with spatial and phylogenetic data collection and management; C. Schank for help preparing the tree visualizations. This work was carried out using the BlueFern Supercomputing Facilities (http://www.bluefern.canterbury.ac.nz), University of Canterbury, the Advanced Computing Research Centre, University of Bristol (http://www.bris.ac.uk/acrc/) and the Interdisciplinary Research in Mathematics and Computer Sciences Centre, Simon Fraser University (http://www.irmacs.sfu.ca). This work was partly supported by NSF grants DBI 0960550 and DEB 1026764 and NASA Biodiversity Grant NNX11AP72G (W.J.); the Natural Environment Research Council (Postdoctoral Fellowship grant number NE/G012938/1 and the NERC Centre for Population Biology) (G.H.T.); and NSERC Canada, the Wissenschaftskolleg zu Berlin, the Yale Institute for Biospheric Sciences and Simon Fraser University (A.O.M.). Most importantly, we thank the many avian systematists and phylogeneticists who have contributed their data to public databases and so made our study possible.

Author information

Author notes

  1. W. Jetz, G. H. Thomas and J. B. Joy: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06520-8106, USA,
    W. Jetz
  2. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK,
    G. H. Thomas
  3. Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada,
    J. B. Joy & A. O. Mooers
  4. Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia,
    K. Hartmann

Authors

  1. W. Jetz
    You can also search for this author inPubMed Google Scholar
  2. G. H. Thomas
    You can also search for this author inPubMed Google Scholar
  3. J. B. Joy
    You can also search for this author inPubMed Google Scholar
  4. K. Hartmann
    You can also search for this author inPubMed Google Scholar
  5. A. O. Mooers
    You can also search for this author inPubMed Google Scholar

Contributions

W.J., A.O.M., and G.H.T. conceived of the study; K.H., W.J., J.B.J., A.O.M. and G.H.T. developed the methods; W.J., J.B.J. and G.H.T. collected the data; W.J., J.B.J. and G.H.T. conducted the analyses; W.J., J.B.J., A.O.M. and G.H.T. wrote the paper. W.J., J.B.J, G.H.T. and A.O.M. contributed equally to the study.

Corresponding authors

Correspondence toW. Jetz or A. O. Mooers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file comprises 1) Supplementary Methods, which include Figures 1-5 and Tables 1-3; 2) a Supplementary Discussion, which includes Figures 1-7 and Table 1; 3) an Inventory of the zipped Supplementary Data Files (see separate file); and 4) Supplementary References. (PDF 2444 kb)

Supplementary Data

This zipped file contains the Supplementary Data files - see Supplementary Information file (pg 32) for details. (ZIP 2008 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Jetz, W., Thomas, G., Joy, J. et al. The global diversity of birds in space and time.Nature 491, 444–448 (2012). https://doi.org/10.1038/nature11631

Download citation