Activated GTPase movement on an RNA scaffold drives co-translational protein targeting (original) (raw)

References

  1. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)
    Article CAS Google Scholar
  2. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)
    Article ADS CAS Google Scholar
  3. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006)
    Article ADS CAS Google Scholar
  4. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006)
    Article ADS CAS Google Scholar
  5. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004)
    Article ADS CAS Google Scholar
  6. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004)
    Article ADS CAS Google Scholar
  7. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009)
    Article ADS CAS Google Scholar
  8. Peluso, P., Shan, S. O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of ffh and FtsY. Biochemistry 40, 15224–15233 (2001)
    Article CAS Google Scholar
  9. Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010)
    Article ADS CAS Google Scholar
  10. Janda, C. Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510 (2010)
    Article ADS CAS Google Scholar
  11. Batey, R. T., Rambo, R. P., Lucast, L., Rha, B. & Doudna, J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000)
    Article ADS CAS Google Scholar
  12. Zhang, X., Kung, S. & Shan, S. O. Demonstration of a multistep mechanism for assembly of the SRP·SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 381, 581–593 (2008)
    Article CAS Google Scholar
  13. Shen, K. & Shan, S. O. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc. Natl Acad. Sci. USA 107, 7698–7703 (2010)
    Article ADS CAS Google Scholar
  14. Shen, K., Zhang, X. & Shan, S. O. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA 17, 892–902 (2011)
    Article CAS Google Scholar
  15. Estrozi, L. F., Boehringer, D., Shan, S., Ban, N. & Schaffitzel, C. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nature Struct. Mol. Biol. 18, 88–90 (2011)
    Article CAS Google Scholar
  16. Althoff, S., Selinger, D. & Wise, J. A. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res. 22, 1933–1947 (1994)
    Article CAS Google Scholar
  17. Ataide, S. F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011)
    Article ADS CAS Google Scholar
  18. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996)
    Article ADS CAS Google Scholar
  19. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)
    Article CAS Google Scholar
  20. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006)
    Article ADS CAS Google Scholar
  21. Shan, S. O., Chandrasekar, S. & Walter, P. Conformational changes in the GTPase modules of the signal reception particle and its initiation of protein translocation. J. Cell Biol. 178, 611–620 (2007)
    Article CAS Google Scholar
  22. Shan, S. O., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320 (2004)
    Article Google Scholar
  23. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S. O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl Acad. Sci. USA 106, 1754–1759 (2009)
    Article ADS CAS Google Scholar
  24. Zhang, X. et al. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl Acad. Sci. USA 108, 6450–6455 (2011)
    Article ADS CAS Google Scholar
  25. Halic, M. et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745–747 (2006)
    Article ADS CAS Google Scholar
  26. Hoskins, A. A., Gelles, J. & Moore, M. J. New insights into the spliceosome by single molecule fluorescence microscopy. Curr. Opin. Chem. Biol. 15, 864–870 (2011)
    Article CAS Google Scholar
  27. Lohman, T. M. & Bjornson, K. P. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214 (1996)
    Article CAS Google Scholar
  28. Yodh, J. G., Schlierf, M. & Ha, T. Insight into helicase mechanism and function revealed through single-molecule approaches. Q. Rev. Biophys. 43, 185–217 (2010)
    Article CAS Google Scholar
  29. Yuan, R. Structure and mechanism of multifunctional restriction endonucleases. Annu. Rev. Biochem. 50, 285–315 (1981)
    Article CAS Google Scholar
  30. Murray, N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434 (2000)
    Article CAS Google Scholar
  31. Schaffitzel, C. & Ban, N. Generation of ribosome nascent chain complexes for structural and functional studies. J. Struct. Biol. 158, 463–471 (2007)
    Article CAS Google Scholar
  32. van der Sluis, E. O., Nouwen, N. & Driessen, A. J. SecY-SecY and SecY-SecG contacts revealed by site-specific crosslinking. FEBS Lett. 527, 159–165 (2002)
    Article CAS Google Scholar
  33. Ferré-D’Amaré, A. R. & Doudna, J. A. Use of _cis_- and _trans_-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978 (1996)
    Article Google Scholar
  34. Dalal, K. & Duong, F. Reconstitution of the SecY translocon in nanodiscs. Methods Mol. Biol. 619, 145–156 (2010)
    Article CAS Google Scholar
  35. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)
    Article CAS Google Scholar
  36. Mothes, W., Jungnickel, B., Brunner, J. & Rapoport, T. A. Signal sequence recognition in cotranslational translocation by protein components of the endoplasmic reticulum membrane. J. Cell Biol. 142, 355–364 (1998)
    Article CAS Google Scholar
  37. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)
    Article CAS Google Scholar
  38. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997)
    Article CAS Google Scholar

Download references