Bypass of a protein barrier by a replicative DNA helicase (original) (raw)
References
Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem.69, 651–697 (2000) ArticleCAS Google Scholar
Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol.18, 243–257 (2008) ArticleCAS Google Scholar
Egelman, E. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA92, 3869–3873 (1995) ArticleADSCAS Google Scholar
Kaplan, D. L. & O’Donnell, M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol. Cell15, 453–465 (2004) ArticleCAS Google Scholar
Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell146, 931–941 (2011) ArticleCAS Google Scholar
Kaplan, D. L., Davey, M. J. & O’Donnell, M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem.278, 49171–49182 (2003) ArticleCAS Google Scholar
Fanning, E. & Zhao, K. SV40 DNA replication: from the A gene to a nanomachine. Virology384, 352–359 (2009) ArticleCAS Google Scholar
Fanning, E., Zhao, X. & Jiang, X. in DNA Tumor Viruses (eds Damania, B. & Pipas, J. M. ) 1–24 (Springer US, 2009) Book Google Scholar
Wessel, R., Schweizer, J. & Stahl, H. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol.66, 804–815 (1992) CASPubMedPubMed Central Google Scholar
Weisshart, K. et al. Two regions of simian virus 40 large T antigen determine cooperativity of double-hexamer assembly on the viral origin of DNA replication and promote hexamer interactions during bidirectional origin DNA unwinding. J. Virol.73, 2201–2211 (1999) CASPubMedPubMed Central Google Scholar
Barbaro, B. A., Sreekumar, K. R., Winters, D. R., Prack, A. E. & Bullock, P. A. Phosphorylation of simian virus 40 large T antigen on Thr 124 selectively promotes double-hexamer formation on subfragments of the viral core origin. J. Virol.74, 8601–8613 (2000) ArticleCAS Google Scholar
Smelkova, N. V. & Borowiec, J. A. Dimerization of simian virus 40 T-antigen hexamers activates T-antigen DNA helicase activity. J. Virol.71, 8766–8773 (1997) CASPubMedPubMed Central Google Scholar
Alexandrov, A. I., Botchan, M. R. & Cozzarelli, N. R. Characterization of simian virus 40 T-antigen double hexamers bound to a replication fork. J. Biol. Chem.277, 44886–44897 (2002) ArticleCAS Google Scholar
SenGupta, D. J. & Borowiec, J. A. Strand-specific recognition of a synthetic DNA replication fork by the SV40 large tumor antigen. Science256, 1656–1661 (1992) ArticleADSCAS Google Scholar
Morris, P. D. et al. Hepatitis C virus NS3 and simian virus 40 large T antigen helicases displace streptavidin from 5′-biotinylated oligonucleotides but not from 3′-biotinylated oligonucleotides: evidence for directional bias in translocation on single-stranded DNA. Biochemistry41, 2372–2378 (2002) ArticleCAS Google Scholar
Goetz, G. S., Dean, F. B., Hurwitz, J. & Matson, S. W. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J. Biol. Chem.263, 383–392 (1988) CASPubMed Google Scholar
Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature442, 270–275 (2006) ArticleADSCAS Google Scholar
Li, D. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature423, 512–518 (2003) ArticleADSCAS Google Scholar
Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell119, 47–60 (2004) ArticleCAS Google Scholar
Gomez-Lorenzo, M. G. et al. Large large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication. EMBO J.22, 6205–6213 (2003) ArticleCAS Google Scholar
Cuesta, I. et al. Conformational rearrangements of SV40 large large T antigen during early replication events. J. Mol. Biol.397, 1276–1286 (2010) ArticleCAS Google Scholar
Borowiec, J. A. & Hurwitz, J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl Acad. Sci. USA85, 64–68 (1988) ArticleADSCAS Google Scholar
Sclafani, R. A., Fletcher, R. J. & Chen, X. S. Two heads are better than one: regulation of DNA replication by hexameric helicases. Genes Dev.18, 2039–2045 (2004) ArticleCAS Google Scholar
Takahashi, T. S., Wigley, D. B. & Walter, J. C. Pumps, paradoxes and ploughshares: mechanism of the MCM2–7 DNA helicase. Trends Biochem. Sci.30, 437–444 (2005) ArticleCAS Google Scholar
Yardimci, H., Loveland, A. B., Habuchi, S., van Oijen, A. M. & Walter, J. C. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol. Cell40, 834–840 (2010) ArticleCAS Google Scholar
Yardimci, H., Loveland, A. B., van Oijen, A. M. & Walter, J. C. Single-molecule analysis of DNA replication in Xenopus egg extracts. Methods57, 179–186 (2012) ArticleCAS Google Scholar
Stillman, B. W. & Gluzman, Y. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells. Mol. Cell. Biol.5, 2051–2060 (1985) ArticleCAS Google Scholar
Wobbe, C. R., Dean, F., Weissbach, L. & Hurwitz, J. In vitro replication of duplex circular DNA containing the simian virus 40 DNA origin site. Proc. Natl Acad. Sci. USA82, 5710–5714 (1985) ArticleADSCAS Google Scholar
Bullock, P. A., Seo, Y. S. & Hurwitz, J. Initiation of simian virus 40 DNA synthesis in vitro. Mol. Cell. Biol.11, 2350–2361 (1991) ArticleCAS Google Scholar
Murakami, Y. & Hurwitz, J. Functional interactions between SV40 large T antigen and other replication proteins at the replication fork. J. Biol. Chem.268, 11008–11017 (1993) CASPubMed Google Scholar
Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a τ-DnaB interaction mediates rapid replication fork movement. Cell84, 643–650 (1996) ArticleCAS Google Scholar
Stano, N. M. et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature435, 370–373 (2005) ArticleADSCAS Google Scholar
Chen, L. et al. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry30, 11018–11025 (1991) ArticleCAS Google Scholar
Seinsoth, S., Uhlmann-Schiffler, H. & Stahl, H. Bidirectional DNA unwinding by a ternary complex of large T antigen, nucleolin and topoisomerase I. EMBO Rep.4, 263–268 (2003) ArticleCAS Google Scholar
Barker, S., Weinfeld, M. & Murray, D. DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat. Res.589, 111–135 (2005) ArticleCAS Google Scholar
Anand, R. P. et al. Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res.40, 1091–1105 (2011) Article Google Scholar
Wu, C., Roy, R. & Simmons, D. T. Role of single-stranded DNA binding activity of large T antigen in simian virus 40 DNA replication. J. Virol.75, 2839–2847 (2001) ArticleCAS Google Scholar
Eki, T., Matsumoto, T., Murakami, Y. & Hurwitz, J. The replication of DNA containing the simian virus 40 origin by the monopolymerase and dipolymerase systems. J. Biol. Chem.267, 7284–7294 (1992) CASPubMed Google Scholar
Ishimi, Y., Claude, A., Bullock, P. & Hurwitz, J. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem.263, 19723–19733 (1988) CASPubMed Google Scholar
Wold, M. S., Li, J. J. & Kelly, T. J. Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc. Natl Acad. Sci. USA84, 3643–3647 (1987) ArticleADSCAS Google Scholar
Wang, I.-N. Lysis timing and bacteriophage fitness. Genetics172, 17–26 (2005) Article Google Scholar
Thomason, L. C., Oppenheim, A. B. & Court, D. L. Modifying bacteriophage lambda with recombineering. Methods Mol Biol.501, 239–251 (2009) ArticleCAS Google Scholar
Kuhn, H. & Frank-Kamenetskii, M. D. Labeling of unique sequences in double-stranded DNA at sites of vicinal nicks generated by nicking endonucleases. Nucleic Acids Res.36, e40 (2008) Article Google Scholar
Loparo, J. J., Kulczyk, A. W., Richardson, C. C. & van Oijen, A. M. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc. Natl Acad. Sci. USA108, 3584–3589 (2011) ArticleADSCAS Google Scholar
MacMillan, A. M., Chen, L. & Verdine, G. L. Synthesis of an oligonucleotide suicide substrate for DNA methyltransferases. J. Org. Chem.57, 2989–2991 (1992) ArticleCAS Google Scholar
Tanner, N. A. & van Oijen, A. M. in Single Molecule Tools, Part B:Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods (ed. Walter, N. G. ) 259–278 (Academic, 2010)