Structures of the human and Drosophila 80S ribosome (original) (raw)
Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature461, 1234–1242 (2009) ArticleCASADSPubMed Google Scholar
Wilson, D. N. & Cate, J. H. D. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol.4, a011536 (2012) ArticleCASPubMedPubMed Central Google Scholar
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M. & Ban, N. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci.37, 189–198 (2012) ArticleCASPubMed Google Scholar
Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nature Struct. Mol. Biol.19, 560–567 (2012) ArticleCAS Google Scholar
Armache, J. P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl Acad. Sci. USA107, 19748–19753 (2010) ArticleCASADSPubMedPubMed Central Google Scholar
Armache, J. P. et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl Acad. Sci. USA107, 19754–19759 (2010) ArticleCASADSPubMedPubMed Central Google Scholar
Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science331, 730–736 (2011) ArticleCASADSPubMed Google Scholar
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science334, 941–948 (2011) ArticleCASADSPubMed Google Scholar
Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science334, 1524–1529 (2011) ArticleCASADSPubMed Google Scholar
Dube, P. et al. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. J. Mol. Biol.279, 403–421 (1998) ArticleCASPubMed Google Scholar
Spahn, C. M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes; the IRES functions as an RNA-based translation factor. Cell118, 465–475 (2004) ArticleCASPubMed Google Scholar
Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure13, 1695–1706 (2005) ArticleCASPubMed Google Scholar
Ruvinsky, I. & Meyuhas, O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci.31, 342–348 (2006) ArticleCASPubMed Google Scholar
Koyama, Y., Katagiri, S., Hanai, S., Uchida, K. & Miwa, M. Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and l23a, with unique histone-like amino-terminal extensions. Gene226, 339–345 (1999) ArticleCASPubMed Google Scholar
Ramakrishnan, V. Histone structure and the organization of the nucleosome. Annu. Rev. Biophys. Biomol. Struct.26, 83–112 (1997) ArticleCASPubMed Google Scholar
Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J.26, 2421–2431 (2007) ArticleCASPubMedPubMed Central Google Scholar
Harms, J. M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell30, 26–38 (2008) ArticleCASPubMed Google Scholar
Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol.4, a013706 (2012) ArticleCASPubMedPubMed Central Google Scholar
Ogle, J. M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem.74, 129–177 (2005) ArticleCASPubMed Google Scholar
Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature484, 256–259 (2012) ArticleCASADSPubMed Google Scholar
Lu, H., Li, W., Noble, W. S., Payan, D. & Anderson, D. C. Riboproteomics of the hepatitis C virus internal ribosomal entry site. J. Proteome Res.3, 949–957 (2004) ArticleCASPubMed Google Scholar
Spahn, C. M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science291, 1959–1962 (2001) ArticleCASADSPubMed Google Scholar
Gerbi, S. A. in Ribosomal RNA—Structure, Evolution, Processing, and Function in Protein Synthesis (eds Zimmermann, R. A. & Dahlberg, A. E.) 71–87 (CRC Press, 1996) Google Scholar
Haga, J. Y., Hamilton, M. G. & Petermann, M. L. Electron microscopic observations on the large subunit of the rat liver ribosome. J. Cell Biol.47, 211–221 (1970) ArticleCASPubMedPubMed Central Google Scholar
Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics3, 2 (2002) ArticlePubMedPubMed Central Google Scholar
Fields, D. S. & Gutell, R. R. An analysis of large rRNA sequences folded by a thermodynamic method. Fold. Des.1, 419–430 (1996) ArticleCASPubMed Google Scholar
Alkemar, G. & Nygard, O. Probing the secondary structure of expansion segment ES6 in 18S ribosomal RNA. Biochemistry45, 8067–8078 (2006) ArticleCASPubMed Google Scholar
Andersen, C. B. et al. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature443, 663–668 (2006) ArticleCASADSPubMed Google Scholar
Srivastava, S., Verschoor, A. & Frank, J. Eukaryotic initiation factor-3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J. Mol. Biol.226, 301–304 (1992) ArticleCASPubMed Google Scholar
Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science310, 1513–1515 (2005) ArticleCASADSPubMed Google Scholar
Yu, Y., Abaeva, I. S., Marintchev, A., Pestova, T. V. & Hellen, C. U. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res.39, 4851–4865 (2011) ArticleCASPubMedPubMed Central Google Scholar
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell107, 361–372 (2001) ArticleCASPubMed Google Scholar
Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science326, 1369–1373 (2009) ArticleCASADSPubMedPubMed Central Google Scholar
Sweeney, R., Chen, L. H. & Yao, M. C. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol. Cell. Biol.14, 4203–4215 (1994) ArticleCASPubMedPubMed Central Google Scholar
Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Struct. Mol. Biol.19, 1234–1241 (2012) ArticleCAS Google Scholar
Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature Struct. Mol. Biol.19, 1228–1233 (2012) ArticleCAS Google Scholar
Leidig, C. et al. Structural characterization of a eukaryotic chaperone—the ribosome-associated complex. Nature Struct. Mol. Biol.20, 23–28 (2013) ArticleCAS Google Scholar
Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nature Struct. Mol. Biol.12, 1015–1016 (2005) ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) ArticleCASPubMed Google Scholar
Jossinet, F. & Westhof, E. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics21, 3320–3321 (2005) ArticleCASPubMed Google Scholar
Jossinet, F., Ludwig, T. E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics26, 2057–2059 (2010) ArticleCASPubMedPubMed Central Google Scholar
Eswar, N., Eramian, D., Webb, B., Shen, M. Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol.426, 145–159 (2008) ArticleCASPubMed Google Scholar
Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nature Struct. Mol. Biol.17, 1072–1078 (2010) ArticleCAS Google Scholar
Gebauer, F., Corona, D. F., Preiss, T., Becker, P. B. & Hentze, M. W. Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J.18, 6146–6154 (1999) ArticleCASPubMedPubMed Central Google Scholar
Fuss, I. J., Kanof, M. E., Smith, P. D. & Zola, H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protoc. Immunol.85, 7.1.1–7.1.8 (2009) Google Scholar
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003) ArticlePubMed Google Scholar
Becker, T. et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nature Struct. Mol. Biol.18, 715–720 (2011) ArticleCAS Google Scholar
Hirsch, M., Scholkopf, B. & Habeck, M. A blind deconvolution approach for improving the resolution of cryo-EM density maps. J. Comput. Biol.18, 335–346 (2011) ArticleCASMathSciNetPubMed Google Scholar
Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA109, 1380–1387 (2012) ArticleCASADSPubMedPubMed Central Google Scholar
Maden, B. E. et al. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem. J.246, 519–527 (1987) ArticleCASPubMedPubMed Central Google Scholar
Tautz, D., Hancock, J. M., Webb, D. A., Tautz, C. & Dover, G. A. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol.5, 366–376 (1988) CASPubMed Google Scholar
Thompson, J. F., Wegnez, M. R. & Hearst, J. E. Determination of the secondary structure of Drosophila melanogaster 5 S RNA by hydroxymethyltrimethylpsoralen crosslinking. J. Mol. Biol.147, 417–436 (1981) ArticleCASPubMed Google Scholar
Rousset, F., Pelandakis, M. & Solignac, M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc. Natl Acad. Sci. USA88, 10032–10036 (1991) ArticleCASADSPubMedPubMed Central Google Scholar
Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure16, 673–683 (2008) ArticleCASPubMedPubMed Central Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graph.14, 33–38 (1996) ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-Building Tools for Molecular Graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004) ArticleCASPubMed Google Scholar
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics25, 1189–1191 (2009) ArticleCASPubMedPubMed Central Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007) ArticleCASPubMed Google Scholar
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011) ArticlePubMedPubMed Central Google Scholar
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res.33, 511–518 (2005) ArticleCASPubMedPubMed Central Google Scholar
Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCASPubMed Google Scholar
Nierhaus, K. H. & Dohme, F. Total reconstitution of functionally active 50S ribosomal subunits from E.coli. Proc. Natl Acad. Sci. USA71, 4713–4717 (1974) ArticleCASADSPubMedPubMed Central Google Scholar
Márquez, V. et al. Proteomic characterization of archaeal ribosomes reveals the presence of novel archaeal-specific ribosomal proteins. J. Mol. Biol.405, 1215–1232 (2011) ArticleCASPubMed Google Scholar
Norousi, R. et al. Automated post-picking using MAPPOS improves particle image detection from cryo-EM micrographs. J. Struct. Biol.http://dx.doi.org/10.1016/j.jsb.2013.02.008 (2013)