A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway (original) (raw)
Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol.22, 474–482 (2012) ArticleCAS Google Scholar
Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell138, 696–708 (2009) ArticleCAS Google Scholar
Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Struct. Mol. Biol.16, 1021–1025 (2009) ArticleCAS Google Scholar
Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA18, 1875–1885 (2012) ArticleCAS Google Scholar
Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell32, 276–284 (2008) ArticleCAS Google Scholar
Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nature Genet.44, 277–284 (2012) ArticleCAS Google Scholar
Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol.18, 505–516 (2008) ArticleCAS Google Scholar
Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science320, 97–100 (2008) ArticleCASADS Google Scholar
Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA14, 1539–1549 (2008) ArticleCAS Google Scholar
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol.10, 987–993 (2008) ArticleCAS Google Scholar
Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans . Science226, 409–416 (1984) ArticleCASADS Google Scholar
Zhu, H. et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genet.42, 626–630 (2010) ArticleCAS Google Scholar
Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell147, 81–94 (2011) ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007) ArticleCASADS Google Scholar
Chang, H. M. et al. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nature Commun.3, 923 (2012) ArticleADS Google Scholar
Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell147, 1066–1079 (2011) ArticleCAS Google Scholar
Viswanathan, S. R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genet.41, 843–848 (2009) ArticleCAS Google Scholar
Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell147, 1080–1091 (2011) ArticleCAS Google Scholar
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005) ArticleCASADS Google Scholar
Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol.14, 15–22 (2007) ArticleCAS Google Scholar
Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J.29, 2342–2357 (2010) ArticleCAS Google Scholar
Staals, R. H. et al. Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J.29, 2358–2367 (2010) ArticleCAS Google Scholar
Frazão, C. et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature443, 110–114 (2006) ArticleADS Google Scholar
Mullen, T. E. & Marzluff, W. F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev.22, 50–65 (2008) ArticleCAS Google Scholar
Norbury, C. J. 3′ Uridylation and the regulation of RNA function in the cytoplasm. Biochem. Soc. Trans.38, 1150–1153 (2010) ArticleCAS Google Scholar
Rissland, O. S. & Norbury, C. J. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nature Struct Mol. Biol.16, 616–623 (2009) ArticleCAS Google Scholar
LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell121, 713–724 (2005) ArticleCAS Google Scholar
Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell121, 725–737 (2005) ArticleCAS Google Scholar
Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.EMBO J.http://dx.doi.org/10.1038/emboj.2013.63 (15 Mar, 2013)
Renard, B. Y. et al. When less can yield more — computational preprocessing of MS/MS spectra for peptide identification. Proteomics9, 4978–4984 (2009) ArticleCAS Google Scholar