Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor (original) (raw)

References

  1. Peng, T. & Morrisey, E. E. Development of the pulmonary vasculature: current understanding and concepts for the future. Pulm Circ 3, 176–178 (2013)
    Article CAS Google Scholar
  2. Goss, A. M. et al. Wnt2/2b and β-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009)
    Article CAS Google Scholar
  3. Harris-Johnson, K. S., Domyan, E. T., Vezina, C. M. & Sun, X. β-Catenin promotes respiratory progenitor identity in mouse foregut. Proc. Natl Acad. Sci. USA 106, 16287–16292 (2009)
    Article ADS CAS Google Scholar
  4. Cai, C. L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003)
    Article CAS Google Scholar
  5. Moses, K. A., DeMayo, F., Braun, R. M., Reecy, J. L. & Schwartz, R. J. Embryonic expression of an Nkx2–5/Cre gene using ROSA26 reporter mice. Genesis 31, 176–180 (2001)
    Article CAS Google Scholar
  6. Goss, A. M. et al. Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev. Biol. 356, 541–552 (2011)
    Article CAS Google Scholar
  7. Tian, Y. et al. Characterization and in vivo pharmacological rescue of a Wnt2–Gata6 pathway required for cardiac inflow tract development. Dev. Cell 18, 275–287 (2010)
    Article CAS Google Scholar
  8. Hoffmann, A. D., Peterson, M. A., Friedland-Little, J. M., Anderson, S. A. & Moskowitz, I. P. Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136, 1761–1770 (2009)
    Article CAS Google Scholar
  9. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010)
    Article ADS CAS Google Scholar
  10. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010)
    Article ADS CAS Google Scholar
  11. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010)
    Article CAS Google Scholar
  12. Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161–3171 (2008)
    Article CAS Google Scholar
  13. White, A. C., Lavine, K. J. & Ornitz, D. M. FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network. Development 134, 3743–3752 (2007)
    Article CAS Google Scholar
  14. Lin, L., Bu, L., Cai, C. L., Zhang, X. & Evans, S. Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev. Biol. 295, 756–763 (2006)
    Article CAS Google Scholar
  15. Morrisey, E. E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579–3590 (1998)
    Article CAS Google Scholar
  16. Bai, L. Y. et al. Differential expression of Sonic hedgehog and Gli1 in hematological malignancies. Leukemia 22, 226–228 (2008)
    Article CAS Google Scholar
  17. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004)
    Article CAS Google Scholar
  18. Jeong, J., Mao, J., Tenzen, T., Kottmann, A. H. & McMahon, A. P. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 18, 937–951 (2004)
    Article CAS Google Scholar
  19. Lepore, J. J. et al. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22α-Cre transgenic mice. Genesis 41, 179–184 (2005)
    Article CAS Google Scholar
  20. Long, F., Zhang, X. M., Karp, S., Yang, Y. & McMahon, A. P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001)
    Article CAS Google Scholar
  21. Sun, Y. et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304, 286–296 (2007)
    Article CAS Google Scholar
  22. Shu, W., Jiang, Y. Q., Lu, M. M. & Morrisey, E. E. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129, 4831–4842 (2002)
    Article CAS Google Scholar
  23. Snippert, H. J., Schepers, A. G., Delconte, G., Siersema, P. D. & Clevers, H. Slide preparation for single-cell-resolution imaging of fluorescent proteins in their three-dimensional near-native environment. Nature Protocols 6, 1221–1228 (2011)
    Article CAS Google Scholar
  24. Morrisey, E. E., Ip, H. S., Lu, M. M. & Parmacek, M. S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309–322 (1996)
    Article CAS Google Scholar
  25. Yokomizo, T. et al. Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos. Nature Protocols 7, 421–431 (2012)
    Article CAS Google Scholar

Download references