Doorduyn, Y., Van Den Brandhof, W. E., Van Duynhoven, Y. T., Wannet, W. J. & Van Pelt, W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiol. Infect.134, 617–626 (2006) ArticleCAS Google Scholar
Pavia, A. T. et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella. J. Infect. Dis.161, 255–260 (1990) ArticleCAS Google Scholar
Pépin, J. et al. Emergence of fluoroquinolones as the predominant risk factor for _Clostridium difficile_-associated diarrhea: a cohort study during an epidemic in Quebec. Clin. Infect. Dis.41, 1254–1260 (2005) Article Google Scholar
Kelly, C. P., Pothoulakis, C. & LaMont, J. T. Clostridium difficile colitis. N. Engl. J. Med.330, 257–262 (1994) ArticleCAS Google Scholar
Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science307, 1915–1920 (2005) ArticleADS Google Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010) ArticleCAS Google Scholar
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog.6, e1000711 (2010) Article Google Scholar
Chang, D. E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl Acad. Sci. USA101, 7427–7432 (2004) ArticleCASADS Google Scholar
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307, 1955–1959 (2005) ArticleCASADS Google Scholar
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe4, 447–457 (2008) ArticleCAS Google Scholar
Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun.76, 1143–1152 (2008) ArticleCAS Google Scholar
Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science336, 1325–1329 (2012) ArticleCASADS Google Scholar
Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature492, 113–117 (2012) ArticleCASADS Google Scholar
Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E.coli O157:H7 in the mouse intestine. PLoS ONE8, e53957 (2013) ArticleCASADS Google Scholar
Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.6, e280 (2008) Article Google Scholar
Hapfelmeier, S. & Hardt, W. D. A mouse model for S. _typhimurium_-induced enterocolitis. Trends Microbiol.13, 497–503 (2005) ArticleCAS Google Scholar
Lawley, T. D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun.76, 403–416 (2008) ArticleCAS Google Scholar
Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun.77, 3661–3669 (2009) ArticleCAS Google Scholar
Chen, X. et al. A mouse model of _Clostridium difficile_-associated disease. Gastroenterology135, 1984–1992 (2008) Article Google Scholar
Vimr, E. R., Kalivoda, K. A., Deszo, E. L. & Steenbergen, S. M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev.68, 132–153 (2004) ArticleCAS Google Scholar
Marcobal, A. et al. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem.58, 5334–5340 (2010) ArticleCAS Google Scholar
Hoyer, L. L., Hamilton, A. C., Steenbergen, S. M. & Vimr, E. R. Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH, provides evidence for interspecies gene transfer. Mol. Microbiol.6, 873–884 (1992) ArticleCAS Google Scholar
Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet.38, 779–786 (2006) Article Google Scholar
Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5, e244 (2007) Article Google Scholar
Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature467, 426–429 (2010) ArticleCASADS Google Scholar
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2, 119–129 (2007) ArticleCAS Google Scholar
Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun.76, 907–915 (2008) ArticleCAS Google Scholar
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA97, 6640–6645 (2000) ArticleCASADS Google Scholar
Vimr, E. R. & Troy, F. A. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J. Bacteriol.164, 845–853 (1985) CASPubMedPubMed Central Google Scholar
Heap, J. T. et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods80, 49–55 (2010) ArticleCAS Google Scholar
Adams, C. M. et al. Structural and functional studies of the CspB protease required for Clostridium spore germination. PLoS Pathog.9, e1003165 (2013) ArticleCAS Google Scholar
O’Connor, J. R. et al. Construction and analysis of chromosomal Clostridium difficile mutants. Mol. Microbiol.61, 1335–1351 (2006) Article Google Scholar
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell141, 1241–1252 (2010) ArticleCAS Google Scholar
Stevens, J. R. et al. Statistical issues in the normalization of multi-species microarray data. Appl. Stat. Agric. Proc. Conf. Appl. Stat. Agric. Kansas State Univ. 47–62 (National Agricultural Library, 2008)
Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA98, 5116–5121 (2001) ArticleCASADS Google Scholar
Manzi, A. E., Diaz, S. & Varki, A. High-pressure liquid chromatography of sialic acids on a pellicular resin anion-exchange column with pulsed amperometric detection: a comparison with six other systems. Anal. Biochem.188, 20–32 (1990) ArticleCAS Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6, 1621–1624 (2012) ArticleCAS Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336 (2010) ArticleCAS Google Scholar
Lozupone, C., Hamady, M. & Knight, R. UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics7, 371 (2006) Article Google Scholar