BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2 (original) (raw)

References

  1. Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012)
    Article CAS Google Scholar
  2. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003)
    Article CAS Google Scholar
  3. Tous, C. & Aguilera, A. Impairment of transcription elongation by R-loops in vitro . Biochem. Biophys. Res. Commun. 360, 428–432 (2007)
    Article CAS Google Scholar
  4. Kaneko, S., Chu, C., Shatkin, A. & Manley, J. Human capping enzyme promotes formation of transcriptional R loops in vitro . Proc. Natl Acad. Sci. USA 104, 17620–17625 (2007)
    Article ADS CAS Google Scholar
  5. Skourti-Stathaki, K., Proudfoot, N. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011)
    Article CAS Google Scholar
  6. Mischo, H. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21–32 (2011)
    Article CAS Google Scholar
  7. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biol. 11, 1315–1324 (2009)
    Article CAS Google Scholar
  8. Wellinger, R., Prado, F. & Aguilera, A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 26, 3327–3334 (2006)
    Article CAS Google Scholar
  9. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011)
    Article CAS Google Scholar
  10. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011)
    Article CAS Google Scholar
  11. Domínguez-Sánchez, M., Barroso, S., Gómez-González, B., Luna, R. & Aguilera, A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 7, e1002386 (2011)
    Article Google Scholar
  12. Castellano-Pozo, M., García-Muse, T. & Aguilera, A. R-loops cause replication impairment and genome instability during meiosis. EMBO Rep. 13, 923–929 (2012)
    Article CAS Google Scholar
  13. Gómez-González, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106–3119 (2011)
    Article Google Scholar
  14. Jani, D. et al. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 40, 4562–4573 (2012)
    Article CAS Google Scholar
  15. Cabal, G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006)
    Article ADS CAS Google Scholar
  16. Umlauf, D. et al. The human TREX-2 complex is stably associated with the nuclear pore basket. J. Cell Sci. 126, 2656–2667 (2013)
    Article CAS Google Scholar
  17. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. Nab2p and the Thp1p–Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232 (2003)
    Article CAS Google Scholar
  18. Ellisdon, A., Dimitrova, L., Hurt, E. & Stewart, M. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nature Struct. Mol. Biol. 19, 328–336 (2012)
    Article CAS Google Scholar
  19. Li, J. et al. DSS1 is required for the stability of BRCA2. Oncogene 25, 1186–1194 (2006)
    Article CAS Google Scholar
  20. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods 3, 995–1000 (2006)
    Article Google Scholar
  21. El Hage, A., French, S., Beyer, A. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010)
    Article CAS Google Scholar
  22. Ginno, P., Lott, P., Christensen, H., Korf, I. & Chédin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012)
    Article CAS Google Scholar
  23. Urtishak, K. et al. Timeless maintains genomic stability and suppresses sister chromatid exchange during unperturbed DNA replication. J. Biol. Chem. 284, 8777–8785 (2009)
    Article CAS Google Scholar
  24. Gravells, P. et al. Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene 32, 5338–5346 (2013)
    Article CAS Google Scholar
  25. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011)
    Article CAS Google Scholar
  26. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003)
    Article CAS Google Scholar
  27. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011)
    Article CAS Google Scholar
  28. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012)
    Article CAS Google Scholar
  29. Moldovan, G.-L. & D’Andrea, A. How the Fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43, 223–249 (2009)
    Article CAS Google Scholar
  30. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1-ssDNA structure. Science 297, 1837–1848 (2002)
    Article ADS CAS Google Scholar
  31. ten Asbroek, A., van Groenigen, M., Nooij, M. & Baas, F. The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides. Eur. J. Biochem. 269, 583–592 (2002)
    Article CAS Google Scholar
  32. Bayani, J. & Squire, J. A. Sister chromatid exchange. Curr. Protoc. Cell Biol. 25, 22.7.1–22.7.4 (2005)
    Article Google Scholar
  33. Smith, A., Friedman, D., Yu, H., Carnahan, R. & Reynolds, A. ReCLIP (reversible cross-link immuno-precipitation): an efficient method for interrogation of labile protein complexes. PLoS ONE 6, e16206 (2011)
    Article ADS CAS Google Scholar

Download references