Evolutionary origin of the turtle skull (original) (raw)

References

  1. Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T. & Zhao, L.-J. An ancestral turtle from the Late Triassic of southwestern China. Nature 456, 497–501 (2008)
    Article ADS CAS Google Scholar
  2. Lyson, T. R., Bever, G. S., Bhullar, B.-A. S., Joyce, W. G. & Gauthier, J. A. Transitional fossils and the origin of turtles. Biol. Lett. 6, 830–833 (2010)
    Article Google Scholar
  3. Lyson, T. R., Bever, G. S., Scheyer, T. M., Hsiang, A. Y. & Gauthier, J. A. Evolutionary origin of the turtle shell. Curr. Biol. 23, 1113–1119 (2013)
    Article CAS Google Scholar
  4. Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5, 5211 (2014)
    Article ADS CAS Google Scholar
  5. Schoch, R. R. & Sues, H. -D. A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523, 584–587 (2015)
    Article ADS CAS Google Scholar
  6. Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genet. 45, 701–706 (2013)
    Article CAS Google Scholar
  7. Field, D. J. et al. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol. Dev. 16, 189–196 (2014)
    Article CAS Google Scholar
  8. Joyce, W. G. & Gauthier, J. A. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B 271, 1–5 (2004)
    Article Google Scholar
  9. Scheyer, T. M. & Sander, P. M. Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proc. R. Soc. Lond. B 274, 1885–1893 (2007)
    Google Scholar
  10. Gauthier, J., Kluge, A. G. & Rowe, T. Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209 (1988)
    Article Google Scholar
  11. Cundall, D. & Irish, F. in Biology of the Reptilia Vol. 20 (eds Gans, C., Gaunt, A. S., Adler, K. ) 349–692 (Society for the Study of Amphibians and Reptiles, 2008)
    Google Scholar
  12. Bhullar, B.-A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2013)
    Article ADS Google Scholar
  13. Gaffney, E. S. The comparative osteology of the Triassic turtle Proganochelys . Bull. Am. Mus. Nat. Hist. 194, 1–263 (1990)
    Google Scholar
  14. Werneberg, I. Temporal bone arrangements in turtles: an overview. J. Exp. Zool. B 318, 235–249 (2012)
    Article Google Scholar
  15. Müller, J. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G., Wilson, M. V. H., Wilson, R., Cloutier, R. ) 379–408 (Verlag Dr. Friedrich Pfeil, 2004)
    Google Scholar
  16. Lee, M. S. Y. Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds. J. Evol. Biol. 26, 2729–2738 (2013)
    Article CAS Google Scholar
  17. Day, M., Rubidge, B., Almond, J. & Sifelani, J. Biostratigraphic correlation in the Karoo: the case of the Middle Permian parareptile Eunotosaurus: research letter. S. Afr. J. Sci. 109, 1–4 (2013)
    Article Google Scholar
  18. Cox, C. B. The problematic Permian reptile Eunotosaurus . Bull. Br. Mus. Nat. Hist. 18, 165–196 (1969)
    Google Scholar
  19. Keyser, A. W. & Gow, C. E. First complete skull of the Permian reptile Eunotosaurus africanus Seeley. S. Afr. J. Sci. 77, 417–420 (1981)
    Google Scholar
  20. Gow, C. E. A reassessment of Eunotosaurus africanus Seeley (Amniota: Parareptilia). Palaeont. Afr. 34, 33–42 (1997)
    Google Scholar
  21. Bhullar, B.-A. S. & Bever, G. S. An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines). Breviora 518, 1–11 (2009)
    Article Google Scholar
  22. Reisz, R. R., Modesto, S. P. & Scott, D. M. A new Early Permian reptile and its significance in early diapsid evolution. Proc. R. Soc. Lond. B 278, 3731–3737 (2011)
    Google Scholar
  23. Bickelmann, C., Müller, J. & Reisz, R. R. The enigmatic diapsid Acerosodontosaurus piveteaui (Reptilia: Neodiapsida) from the Upper Permian of Madagascar and the paraphyly of “younginiform” reptiles. Can. J. Earth Sci. 46, 651–661 (2009)
    Article Google Scholar
  24. Müller, J. Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften 90, 473–476 (2003)
    Article ADS Google Scholar
  25. Tsuji, L. A. & Müller, J. Assembling the history of the Parareptilia: phylogeny, diversification, and a new definition of the clade. Fossil Rec. 12, 71–81 (2009)
    Article Google Scholar
  26. Piñeiro, G., Ferigolo, J., Ramos, A. & Laurin, M. Cranial morphology of the Early Permian mesosaurid Mesosaurus tenuidens and the evolution of the lower temporal fenestration reassessed. C. R. Palevol 11, 379–391 (2012)
    Article Google Scholar
  27. Bever, G. S., Gauthier, J. A. & Wagner, G. P. Finding the frame shift: digit loss, developmental variability, and the origin of the avian hand. Evol. Dev. 13, 269–279 (2011)
    Article Google Scholar
  28. Reisz, R. R. A Diapsid Reptile from the Pennsylvanian of Kansas (Univ. of Kansas, 1981)
    Book Google Scholar
  29. Rieppel, O. Clarazia and Hescheleria: a re-investigation of two problematical reptiles from the Middle Triassic of Monte San Giorgio (Switzerland). Palaeontogr. Abt. A 195, 101–129 (1987)
    Google Scholar
  30. Lyson, T. R. et al. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol. Dev. 15, 1–9 (2013)
    Article Google Scholar
  31. Romer, A. S. Osteology of the Reptiles (Univ. Chicago Press, 1956)
    Google Scholar
  32. Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamate reptiles. J. Vertebr. Paleontol. 22, 268–275 (2002)
    Article Google Scholar
  33. Goloboff, P. A., Farris, J. & Nixon, K. TNT: a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008)
    Article Google Scholar
  34. Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)
    Article CAS Google Scholar
  35. Miller, M. A., Pfeiffer, W. & Schwartz, T. in Proceedings of the Gateway Computing Environments Workshop 1–8 (IEEE, 2010)
    Google Scholar
  36. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001)
    Article CAS Google Scholar
  37. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012)
    Article CAS Google Scholar

Download references

Acknowledgements

We thank J. Botha-Brink, E. Butler, S. Kaal, E. De Kock, J. Neveling and R. Smith for access to Eunotosaurus specimens. M. Fox and Z. Erasmus prepared fossil material. M. Colbert, J. Maisano, M. Hill and J. Thostenson are acknowledged for their help with the digital data. We thank A. Balanoff, D. Dykes, J. Gauthier, R. Hill, B. Rubidge, R. Smith and K. de Queiroz for helpful discussions. G.S.B. extends special thanks to the Academic Technologies Group at NYIT for their support in the digital visualization of anatomical data.

Author information

Authors and Affiliations

  1. Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, 11568, New York, USA
    G. S. Bever
  2. Division of Paleontology, American Museum of Natural History, New York, 10024, New York, USA
    G. S. Bever
  3. Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, P.O. WITS, Johannesburg, 2050, South Africa
    G. S. Bever & Tyler R. Lyson
  4. Department of Earth Sciences, Denver Museum of Nature and Science, Denver, 80205, Colorado, USA
    Tyler R. Lyson
  5. Department of Geology & Geophysics and Peabody Museum of Natural History, Yale University, New Haven, 06520, Connecticut, USA
    Daniel J. Field & Bhart-Anjan S. Bhullar
  6. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, 60637, Illinois, USA
    Bhart-Anjan S. Bhullar

Authors

  1. G. S. Bever
    You can also search for this author inPubMed Google Scholar
  2. Tyler R. Lyson
    You can also search for this author inPubMed Google Scholar
  3. Daniel J. Field
    You can also search for this author inPubMed Google Scholar
  4. Bhart-Anjan S. Bhullar
    You can also search for this author inPubMed Google Scholar

Contributions

G.S.B. designed the study, processed the CT data, performed the analytical work, constructed the figures, and wrote the paper. T.R.L. performed analytical work, assisted writing the paper, and assisted with figures. D.J.F. and B.-A.S.B. performed analytical work and assisted writing the paper.

Corresponding author

Correspondence toG. S. Bever.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Digital reconstruction of segmented cranial elements of Eunotosaurus africanus CM 777.

a, Palatal view with the lower jaws digitally removed and major roofing elements not rendered. b, Anteromedial view of left palate showing moderately sized suborbital fenestra. c, d, Posteromedial (c) and anterolateral (d) views of left quadrate, prootic, stapes, epipterygoid and midline parabasisphenoid. e, Right lateral view of anterior braincase wall and surrounding elements. Note sutural contact of prootic and quadrate. fk, Lower jaws in dorsal (f), ventral (g), left lateral (h), medial (left jaw) (i), anterior (j), and posterior (k) views. an, angular; ar, articular; bs, parabasisphenoid; co, coronoid; d, dentary; ect, ectopterygoid; epi, epipterygoid; fr, frontal; ju, jugal; la, lacrimal; ls, laterosphenoid; mx, maxilla; op, opisthotic; pa, parietal; pf, prefrontal; pl, palatine; pm, premaxilla; po, postorbital; pof, postfrontal; pr, prootic; pra, prearticular; pt, pterygoid; q, quadrate; qj, quadratojugal; s, stapes; sq, squamosal; sof, suborbital fenestra; sp., splenial; st, supratemporal; sa, surangular; v, vomer; II, inferred exit point for orbital nerve; V, prootic incisure, exit point for trigeminal nerve.

Extended Data Figure 2 The juvenile skull of Eunotosaurus africanus (SAM-PK-K7909) showing clear expression of both LTF and UTF.

a, b, Left lateral view with the rostrum held horizontally (a) and slightly downturned (b). c, Close-up view of fenestrated cheek in right lateral view. The size of the fenestrae decreases in the late stages of postnatal ontogeny through expansion of the surrounding dermal bones. The upper temporal fenestra is eventually obscured by the late-stage ontogenetic development of an elongate supratemporal.

Extended Data Figure 3 Digitally segmented and reconstructed cranial elements of Eunotosaurus africanus (CM86-341).

ad, Right lateral view (a), anterior (b), posterior (c), and right medial (d) views. an, angular; d, dentary; epi, epipterygoid; ju, jugal; la, lacrimal; ‘ls’, ‘laterosphenoid’; mx, maxilla; pa, parietal; pf, prefrontal; pl, palatine; po, postorbital; pof, postfrontal; pt, pterygoid; q, quadrate; qj, quadratojugal; sa + ar, surangular and articular; sq, squamosal; st, supratemporal; UTF, upper temporal fenestra; ?, unclear identity.

Extended Data Figure 4 Strict consensus of two most parsimonious recovered from total character matrix.

Bremer support values are provided for each clade (above line). Bootstrap values exceeding 50% are provided (below line). A _Eunotosaurus_–turtle clade is extremely well supported. That this pan-turtle lineage originated somewhere within the radiation of anatomically diapsid reptiles is well supported, although a refined phylogenetic position remains morphologically elusive. Tree length = 1,087; consistency index = 0.4013; retention index = 0.590.

Extended Data Figure 5 Bayesian tree topology derived from total matrix (50% majority rule consensus).

An exclusive _Eunotosaurus_–turtle clade is recovered with 100% posterior probability. This pan-turtle lineage is nested within the radiation of anatomically diapsid reptiles; however, in contrast to the parsimony solution, turtles are excluded from crown-group Diapsida. The Bayesian results agree with the parsimony in revealing strong support that: (1) Eunotosaurus is an early stem-group turtle; and (2) the ancestral stem turtle expressed a fully diapsid skull. The two analyses also agree that there is currently poor morphological support for a refined position of turtles within the greater diapsid radiation.

Extended Data Figure 6 Strict consensus of 13 most parsimonious trees recovered from cranial-only matrix.

The _Eunotosaurus_–turtle clade is recovered, which supports the hypothesis that the postcranial synapomorphies of Eunotosaurus and turtles are homologous and not the products of convergence. Tree length = 777; consistency index = 0.3956; retention index = 0.4743.

Extended Data Figure 7 Bayesian tree topology derived from cranial-only matrix (50% majority rule consensus).

When studied in isolation, cranial anatomy provides poor resolution of the deep divergences within Pan-Reptilia, but a _Eunotosaurus_–turtle signal is clearly present.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References and Supplementary Tables 1-4. (PDF 1311 kb)

Supplementary Data

This file contains the data matrix used in phylogenetic analyses. (TXT 14 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Bever, G., Lyson, T., Field, D. et al. Evolutionary origin of the turtle skull.Nature 525, 239–242 (2015). https://doi.org/10.1038/nature14900

Download citation