Genome-wide association study identifies 74 loci associated with educational attainment (original) (raw)

References

  1. Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).
    Article ADS CAS Google Scholar
  2. Rietveld, C. A. et al. Replicability and robustness of genome-wide-association studies for behavioral traits. Psychol. Sci. 25, 1975–1986 (2014).
    Article Google Scholar
  3. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).
    Article Google Scholar
  4. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
    Article CAS Google Scholar
  5. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
    Article Google Scholar
  6. Fowler, T., Zammit, S., Owen, M. J. & Rasmussen, F. A population-based study of shared genetic variation between premorbid IQ and psychosis among male twin pairs and sibling pairs from Sweden. Arch. Gen. Psychiatry 69, 460–466 (2012).
    Article Google Scholar
  7. Tambs, K., Sundet, J. M., Magnus, P. & Berg, K. Genetic and environmental contributions to the covariance between occupational status, educational attainment, and IQ: a study of twins. Behav. Genet. 19, 209–222 (1989).
    Article CAS Google Scholar
  8. Thompson, L. A., Detterman, D. K. & Plomin, R. Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. Psychol. Sci. 2, 158–165 (1991).
    Article Google Scholar
  9. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
    Article CAS Google Scholar
  10. Ardlie, K. G. et al.; GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
    Article ADS Google Scholar
  11. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
    Article CAS Google Scholar
  12. Allen Institute for Brain Science. BrainSpan atlas of the developing human brain http://www.brainspan.org (2015).
  13. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
    Article ADS CAS Google Scholar
  14. Krapohl, E. et al. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proc. Natl Acad. Sci. USA 111, 15273–15278 (2014).
    Article ADS CAS Google Scholar
  15. Branigan, A. R., McCallum, K. J. & Freese, J. Variation in the heritability of educational attainment: An international meta-analysis. Social Forces 92, 109–140 (2013).
    Article Google Scholar
  16. Heath, A. C. et al. Education policy and the heritability of educational attainment. Nature 314, 734–736 (1985).
    Article ADS CAS Google Scholar
  17. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genetics 47, 1228–1235 (2015).
    Article CAS Google Scholar

Download references

Acknowledgements

This research was carried out under the auspices of the Social Science Genetic Association Consortium (SSGAC). This research has also been conducted using the UK Biobank Resource. This study was supported by funding from the Ragnar Söderberg Foundation (E9/11), the Swedish Research Council (421-2013-1061), The Jan Wallander and Tom Hedelius Foundation, an ERC Consolidator Grant (647648 EdGe), the Pershing Square Fund of the Foundations of Human Behavior, and the NIA/NIH through grants P01-AG005842, P01-AG005842-20S2, P30-AG012810, and T32-AG000186-23 to NBER, and R01-AG042568 to USC. We thank S. Cunningham, N. Galla and J. Rashtian for research assistance. A full list of acknowledgments is provided in the Supplementary Information.

Author information

Author notes

  1. Aysu Okbay, Jonathan P. Beauchamp, Mark Alan Fontana, James J. Lee, Tune H. Pers, Cornelius A. Rietveld and Patrick Turley: These authors contributed equally to this work.
  2. Peter M. Visscher, Tõnu Esko, Philipp D. Koellinger, David Cesarini and Daniel J. Benjamin: These authors jointly supervised this work.
  3. LifeLines Cohort Study: A list of participants and affiliations appears in the Supplementary Information.

Authors and Affiliations

  1. Department of Applied Economics, Erasmus School of Economics, Erasmus University, Rotterdam, 3062 PA, Rotterdam, The Netherlands
    Aysu Okbay, Cornelius A. Rietveld, Ronald de Vlaming & A. Roy Thurik
  2. Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
    Aysu Okbay, Cornelius A. Rietveld, Ronald de Vlaming, Sven J. van der Lee, Najaf Amin, Frank J. A. van Rooij, Cornelia M. van Duijn, Henning Tiemeier, André G. Uitterlinden & Albert Hofman
  3. Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, 3062 PA, The Netherlands
    Aysu Okbay, Cornelius A. Rietveld, S. Fleur W. Meddens, Ronald de Vlaming, A. Roy Thurik & Philipp D. Koellinger
  4. Department of Economics, Harvard University, Cambridge, 02138, Massachusetts, USA
    Jonathan P. Beauchamp, Patrick Turley, Olga Rostapshova & David I. Laibson
  5. Center for Economic and Social Research, University of Southern California, Los Angeles, 90089-3332, California, USA
    Mark Alan Fontana & Daniel J. Benjamin
  6. Department of Psychology, University of Minnesota Twin Cities, Minneapolis, 55455, Minnesota, USA
    James J. Lee, Michael B. Miller, William G. Iacono, Matt McGue & Robert F. Krueger
  7. Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, 2116, Massachusetts, USA
    Tune H. Pers & Tõnu Esko
  8. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA
    Tune H. Pers, Pascal Timshel, Harm-Jan Westra, Philip L. de Jager, Aarno Palotie & Tõnu Esko
  9. The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, 2100, Denmark
    Tune H. Pers, Tarunveer S. Ahluwalia & Thorkild I. A. Sørensen
  10. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark
    Tune H. Pers
  11. Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
    Guo-Bo Chen, Zhihong Zhu, Andrew Bakshi, Riccardo E. Marioni, Anna A. E. Vinkhuyzen, Jacob Gratten, Jian Yang & Peter M. Visscher
  12. Icelandic Heart Association, Kopavogur, 201, Iceland
    Valur Emilsson & Vilmundur Gudnason
  13. Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, 107, Iceland
    Valur Emilsson
  14. Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, 1081 HV, The Netherlands
    S. Fleur W. Meddens, Christiaan deLeeuw, Danielle Posthuma & Philipp D. Koellinger
  15. Amsterdam Business School, University of Amsterdam, Amsterdam, 1018 TV, The Netherlands
    S. Fleur W. Meddens, Maël P. Lebreton & Philipp D. Koellinger
  16. Department of Government, Uppsala University, Uppsala, 751 20, Sweden
    Sven Oskarsson & Karl-Oskar Lindgren
  17. New York Genome Center, New York, 10013, New York, USA
    Joseph K. Pickrell
  18. Department of Economics, New York University, New York, 10012, New York, USA
    Kevin Thom & David Cesarini
  19. Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, 2800, Denmark
    Pascal Timshel
  20. Department of Biological Psychology, VU University Amsterdam, Amsterdam, 1081 BT, The Netherlands
    Abdel Abdellaoui, Jouke-Jan Hottenga, Gonneke Willemsen & Dorret I. Boomsma
  21. COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark
    Tarunveer S. Ahluwalia, Klaus Bønnelykke, Johannes Waage & Hans Bisgaard
  22. Steno Diabetes Center, Gentofte, 2820, Denmark
    Tarunveer S. Ahluwalia & Johannes Waage
  23. Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, 416 85, Sweden
    Jonas Bacelis & Bo Jacobsson
  24. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
    Clemens Baumbach & Christian Gieger
  25. Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
    Clemens Baumbach & Christa Meisinger
  26. deCODE Genetics/Amgen Inc., Reykjavik, 101, Iceland
    Gyda Bjornsdottir, Augustine Kong, Gudmar Thorleifsson, Bjarni Gunnarsson, Bjarni V. Halldórsson, Kari Stefansson & Unnur Thorsteinsdottir
  27. Department of Cell Biology, Erasmus Medical Center Rotterdam, 3015 CN, The Netherlands
    Johannes H. Brandsma & Raymond A. Poot
  28. Istituto di Ricerca Genetica e Biomedica U.O.S. di Sassari, National Research Council of Italy, Sassari, 07100, Italy
    Maria Pina Concas, Simona Vaccargiu & Mario Pirastu
  29. Psychology, University of Illinois, Champaign, 61820, Illinois, USA
    Jaime Derringer
  30. 23andMe, Inc., Mountain View, California, 94041, USA
    Nicholas A. Furlotte, David A. Hinds & Joyce Y. Tung
  31. Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
    Tessel E. Galesloot & Lambertus A. L. M. Kiemeney
  32. Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34100, Italy
    Giorgia Girotto, Dragana Vuckovic, Ilaria Gandin, Paolo Gasparini & Nicola Pirastu
  33. Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
    Richa Gupta, Antti Latvala, Anu Loukola & Jaakko Kaprio
  34. Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
    Leanne M. Hall, Christopher P. Nelson & Nilesh J. Samani
  35. NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
    Leanne M. Hall, Christopher P. Nelson & Nilesh J. Samani
  36. Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
    Sarah E. Harris, Gail Davies, David C. M. Liewald, Riccardo E. Marioni & Ian J. Deary
  37. Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
    Sarah E. Harris & David J. Porteous
  38. Department of Neurology, General Hospital and Medical University Graz, Graz, 8036, Austria
    Edith Hofer, Katja E. Petrovic, Helena Schmidt & Reinhold Schmidt
  39. Institute for Medical Informatics, Statistics and Documentation, General Hospital and Medical University Graz, Graz, 8036, Austria
    Edith Hofer
  40. Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK
    Momoko Horikoshi
  41. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
    Momoko Horikoshi
  42. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
    Jennifer E. Huffman, Jonathan Marten, Caroline Hayward, Veronique Vitart, James F. Wilson & Alan F. Wright
  43. Institute of Behavioural Sciences, University of Helsinki, Helsinki, 00014, Finland
    Kadri Kaasik, Jari Lahti, Liisa Keltigangas-Järvinen & Katri Räikkönen
  44. Nutrition and Dietetics, Health Science and Education, Harokopio University, Athens, 17671, Greece
    Ioanna P. Kalafati & George V. Dedoussis
  45. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
    Robert Karlsson, Paul Lichtenstein, Nancy L. Pedersen & Patrik K. E. Magnusson
  46. Folkhälsan Research Centre, Helsingfors, 00014, Finland
    Jari Lahti, Katri Räikkönen & Johan G. Eriksson
  47. Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, 6525 EC, The Netherlands
    Christiaan deLeeuw
  48. Quantitative Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
    Penelope A. Lind & Sarah E. Medland
  49. Lifespan Psychology, Max Planck Institute for Human Development, Berlin, 14195, Germany
    Tian Liu
  50. Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH, UK
    Massimo Mangino, Lydia Quaye, Cristina Venturini & Tim D. Spector
  51. NIHR Biomedical Research Centre, Guy’s and St. Thomas’ Foundation Trust, London, SE1 7EH, UK
    Massimo Mangino & Cristina Venturini
  52. Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
    Evelin Mihailov, Natalia Pervjakova, Reedik Mägi, Lili Milani, Andres Metspalu, Markus Perola & Tõnu Esko
  53. Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
    Peter J. van der Most, Behrooz Z. Alizadeh & Judith M. Vonk
  54. Public Health Stream, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
    Christopher Oldmeadow, Elizabeth G. Holliday & John R. Attia
  55. Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2300, Australia
    Christopher Oldmeadow, Elizabeth G. Holliday, Rodney J. Scott & John R. Attia
  56. Centre for Integrated Genomic Medical Research, Institute of Population Health, The University of Manchester, Manchester, M13 9PT, UK
    Antony Payton & William E. R. Ollier
  57. Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, M13 9PL, UK
    Antony Payton
  58. Department of Health, THL-National Institute for Health and Welfare, Helsinki, 00271, Finland
    Natalia Pervjakova, Niina Eklund, Seppo Koskinen, Tomi Mäki-Opas, Veikko Salomaa, Jaakko Kaprio & Markus Perola
  59. Psychiatry, VU University Medical Center & GGZ inGeest, Amsterdam, 1081 HL, The Netherlands
    Wouter J. Peyrot, Yusplitri Milaneschi & Brenda W. J. H. Penninx
  60. Laboratory of Genetics, National Institute on Aging, Baltimore, 21224, Maryland, USA
    Yong Qian, Jun Ding & David Schlessinger
  61. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20521, Finland
    Olli Raitakari
  62. Department of Medical Genetics, University of Lausanne, Lausanne, 1005, Switzerland
    Rico Rueedi & Zoltan Kutalik
  63. Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
    Rico Rueedi & Zoltan Kutalik
  64. Department Of Health Sciences, University of Milan, Milano, 20142, Italy
    Erika Salvi & Daniele Cusi
  65. Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, 45147, Germany
    Börge Schmidt, Lewin Eisele & Karl-Heinz Jöckel
  66. Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
    Katharina E. Schraut, Harry Campbell, Peter K. Joshi, Igor Rudan, Ozren Polasek & James F. Wilson
  67. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892-9780, Maryland, USA
    Jianxin Shi
  68. Icelandic Heart Association, Kopavogur, 201, Iceland
    Albert V. Smith
  69. Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
    Albert V. Smith, Vilmundur Gudnason, Kari Stefansson & Unnur Thorsteinsdottir
  70. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
    Beate St Pourcain, David M. Evans, George McMahon, Lavinia Paternoster, Susan M. Ring, Thorkild I. A. Sørensen, Nicholas J. Timpson & George Davey Smith
  71. School of Oral and Dental Sciences, University of Bristol, Bristol, BS1 2LY, UK
    Beate St Pourcain
  72. Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
    Alexander Teumer, Sebastian E. Baumeister, Henry Völzke & Wolfgang Hoffmann
  73. Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
    Niek Verweij, Klaus Berger & Pim van der Harst
  74. Institute of Epidemiology and Social Medicine, University of Münster, Münster, 48149, Germany
    Juergen Wellmann
  75. Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA
    Harm-Jan Westra
  76. Partners Center for Personalized Genetic Medicine, Boston, 02115, Massachusetts, USA
    Harm-Jan Westra
  77. Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, 60612, Illinois, USA
    Jingyun Yang, Patricia A. Boyle & David A. Bennett
  78. Department of Neurological Sciences, Rush University Medical Center, Chicago, 60612, Illinois, USA
    Jingyun Yang & David A. Bennett
  79. Department of Epidemiology, University of Michigan, Ann Arbor, 48109, Michigan, USA
    Wei Zhao, Jennifer A. Smith, Erin B. Ware & Sharon L. R. Kardia
  80. Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
    Behrooz Z. Alizadeh
  81. Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, D-93053, Germany
    Sebastian E. Baumeister
  82. Institute of Molecular Genetics, National Research Council of Italy, Pavia, 27100, Italy
    Ginevra Biino
  83. Department of Behavioral Sciences, Rush University Medical Center, Chicago, 60612, Illinois, USA
    Patricia A. Boyle
  84. Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
    Francesco P. Cappuccio
  85. Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
    Gail Davies, David C. M. Liewald & Ian J. Deary
  86. Saïd Business School, University of Oxford, Oxford, OX1 1HP, UK
    Jan-Emmanuel De Neve
  87. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
    Panos Deloukas & Stavroula Kanoni
  88. Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
    Panos Deloukas
  89. The Berlin Aging Study II; Research Group on Geriatrics, Charité – Universitätsmedizin Berlin, Germany, 13347, Berlin, Germany
    Ilja Demuth & Elisabeth Steinhagen-Thiessen
  90. Institute of Medical and Human Genetics, Charité-Universitätsmedizin, Berlin, 13353, Berlin, Germany
    Ilja Demuth
  91. German Socio- Economic Panel Study, DIW Berlin, 10117, Berlin, Germany
    Peter Eibich & Martin Kroh
  92. Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, OX3 7LF, UK
    Peter Eibich
  93. The University of Queensland Diamantina Institute, The Translational Research Institute, Brisbane, QLD 4102, Australia
    David M. Evans, Jian Yang & Peter M. Visscher
  94. Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 48109, Michigan, USA
    Jessica D. Faul & David R. Weir
  95. Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, 63018, Missouri, USA
    Mary F. Feitosa, Aldi T. Kraja, Ingrid B. Borecki & Michael A. Province
  96. Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
    Andreas J. Forstner
  97. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, 53127, Germany
    Andreas J. Forstner
  98. Institute of Biomedical and Neural Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, 101, Iceland
    Bjarni V. Halldórsson
  99. Laboratory of Epidemiology, Demography, National Institute on Aging, National Institutes of Health, Bethesda, 20892-9205, Maryland, USA
    Tamara B. Harris
  100. Department of Psychiatry, Washington University School of Medicine, St. Louis, 63110, Missouri, USA
    Andrew C. Heath & Pamela A. Madden
  101. Division of Applied Health Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
    Lynne J. Hocking
  102. Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
    Georg Homuth & Uwe Völker
  103. Manchester Medical School, The University of Manchester, Manchester, M13 9PT, UK
    Michael A. Horan
  104. Departments of Neurology & Psychiatry, Program in Translational NeuroPsychiatric Genomics, Brigham and Women’s Hospital, Boston, 02115, Massachusetts, USA
    Philip L. de Jager
  105. Harvard Medical School, Boston, 02115, Massachusetts, USA
    Philip L. de Jager
  106. Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, N-0403, Norway
    Astanand Jugessur, Ronny Myhre & Bo Jacobsson
  107. Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
    Marika A. Kaakinen
  108. Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
    Mika Kähönen
  109. Department of Clinical Physiology, University of Tampere, School of Medicine, Tampere, 33014, Finland
    Mika Kähönen
  110. Public Health, Medical School, University of Split, Split, 21000, Croatia
    Ivana Kolcic
  111. Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, 1010, Switzerland
    Zoltan Kutalik
  112. Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, 20892-9205, Maryland, USA
    Lenore J. Launer
  113. Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, 1018 XA, The Netherlands
    Maël P. Lebreton
  114. Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305-5797, California, USA
    Douglas F. Levinson
  115. Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
    Peter Lichtner & Thomas Meitinger
  116. Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
    Riccardo E. Marioni
  117. Department of Internal Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
    Pedro Marques-Vidal & Peter Vollenweider
  118. Tema BV, Hoofddorp, 2131 HE, The Netherlands
    Gerardus A. Meddens
  119. Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
    Grant W. Montgomery & Dale R. Nyholt
  120. Institute of Health and Biomedical Innovation, Queensland Institute of Technology, Brisbane, QLD 4059, Australia
    Dale R. Nyholt
  121. Department of Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, 02114, Massachusetts, USA
    Aarno Palotie
  122. The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA
    Aarno Palotie
  123. Department of Psychiatry, Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, 02114, Massachusetts, USA
    Aarno Palotie
  124. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 00014, Finland
    Aarno Palotie, Antti-Pekka Sarin & Jaakko Kaprio
  125. Department of Neurology, Massachusetts General Hospital, Boston, 02114, Massachusetts, USA
    Aarno Palotie
  126. Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, 34100, Italy
    Antonietta Robino, Sheila Ulivi & Paolo Gasparini
  127. Social Impact, Arlington, 22201, Virginia, USA
    Olga Rostapshova & Diego Vozzi
  128. Department of Economics, University of Minnesota Twin Cities, Minneapolis, 55455, Minnesota, USA
    Aldo Rustichini
  129. Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, 60201-3137, Illinois, USA
    Alan R. Sanders & Pablo V. Gejman
  130. Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, 60637, Illinois, USA
    Alan R. Sanders & Pablo V. Gejman
  131. Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, 00300, Finland
    Antti-Pekka Sarin
  132. Research Unit for Genetic Epidemiology, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, General Hospital and Medical University, Graz, 8010, Graz, Austria
    Helena Schmidt
  133. Information Based Medicine Stream, Hunter Medical Research Institute, New Lambton, 2305, NSW, Australia
    Rodney J. Scott
  134. Medical Research Institute, University of Dundee, Dundee, DD1 9SY, UK
    Blair H. Smith
  135. Department of Cardiovascular Science, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, 3000, Belgium
    Jan A. Staessen
  136. R&D VitaK Group, Maastricht University, Maastricht, 6229 EV, The Netherlands
    Jan A. Staessen
  137. Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
    Konstantin Strauch
  138. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig Maximilians-Universität, Munich, 81377, Germany
    Konstantin Strauch
  139. Department of Geriatrics, Florida State University College of Medicine, Tallahassee, 32306, Florida, USA
    Antonio Terracciano
  140. Department of Health Sciences and Genetics, University of Leicester, Leicester, LE1 7RH, UK
    Martin D. Tobin
  141. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
    Frank J. A. van Rooij
  142. Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, 48104, Michigan, USA
    Erin B. Ware
  143. Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, 23562, Germany
    Lars Bertram
  144. Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, UK
    Lars Bertram
  145. Department of Health Sciences, Community & Occupational Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
    Ute Bültmann
  146. Department of Psychology, Union College, Schenectady, 12308, New York, USA
    Christopher F. Chabris
  147. Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, 9042, Cagliari, Italy
    Francesco Cucca
  148. Institute of Biomedical Technologies, Italian National Research Council, Segrate (Milano), 20090, Italy
    Daniele Cusi
  149. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, 00014, Finland
    Johan G. Eriksson
  150. Departments of Human Genetics and Psychiatry, Donders Centre for Neuroscience, Nijmegen, 6500 HB, The Netherlands
    Barbara Franke
  151. Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
    Lude Franke & Pim van der Harst
  152. Experimental Genetics Division, Sidra, Sidra, 26999, Doha, Qatar
    Paolo Gasparini
  153. Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany
    Hans-Jörgen Grabe
  154. Department of Psychiatry and Psychotherapy, HELIOS-Hospital Stralsund, Stralsund, 18437, Germany
    Hans-Jörgen Grabe
  155. Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, 3062 PA, The Netherlands
    Patrick J. F. Groenen
  156. Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, 1105 AZ, The Netherlands
    Pim van der Harst
  157. Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
    Caroline Hayward
  158. Centre for Population Health Research, School of Health Sciences and Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia
    Elina Hyppönen
  159. South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
    Elina Hyppönen
  160. Population, Policy and Practice, UCL Institute of Child Health, London, WC1N 1EH, UK
    Elina Hyppönen & Christine Power
  161. Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
    Marjo-Riitta Järvelin
  162. Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
    Marjo-Riitta Järvelin
  163. Unit of Primary Care, Oulu University Hospital, Oulu, 90029, Finland
    Marjo-Riitta Järvelin
  164. Biocenter Oulu, University of Oulu, Oulu, 90014, Finland
    Marjo-Riitta Järvelin
  165. Fimlab Laboratories, Tampere, 33520, Finland
    Terho Lehtimäki
  166. Department of Clinical Chemistry, University of Tampere, School of Medicine, Tampere, 33014, Finland
    Terho Lehtimäki
  167. Economics, NYU Shanghai, Pudong, 200122, China
    Steven F. Lehrer
  168. Policy Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
    Steven F. Lehrer
  169. Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
    Nicholas G. Martin
  170. Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
    Andres Metspalu
  171. Centre for Clinical and Cognitive Neuroscience, Institute Brain Behaviour and Mental Health, Salford Royal Hospital, Manchester, M6 8HD, UK
    Neil Pendleton
  172. Manchester Institute for Collaborative Research in Ageing, University of Manchester, Manchester, M13 9PL, UK
    Neil Pendleton
  173. Faculty of Medicine, University of Split, Split, 21000, Croatia
    Ozren Polasek
  174. Department of Clinical Genetics, VU Medical Centre, Amsterdam, 1081 HV, The Netherlands
    Danielle Posthuma
  175. Institute of Preventive Medicine. Bispebjerg and Frederiksberg Hospitals, The Capital Region, Frederiksberg, 2000, Denmark
    Thorkild I. A. Sørensen
  176. Montpellier Business School, Montpellier, 34080, France
    A. Roy Thurik
  177. Panteia, Zoetermeer, 2715 CA, The Netherlands
    A. Roy Thurik
  178. Department of Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
    Henning Tiemeier
  179. Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
    Henning Tiemeier
  180. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
    André G. Uitterlinden
  181. Department of Sociology, New York University, New York, 10012, New York, USA
    Dalton C. Conley
  182. School of Medicine, New York University, New York, 10016, New York, USA
    Dalton C. Conley
  183. Bioethics Program, Union Graduate College – Icahn School of Medicine at Mount Sinai, Schenectady, 12308, New York, USA
    Michelle N. Meyer
  184. Department of Economics, Stockholm School of Economics, Stockholm, 113 83, Sweden
    Magnus Johannesson
  185. Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA
    Tõnu Esko
  186. Research Institute for Industrial Economics, Stockholm, 10215, Sweden
    David Cesarini

Authors

  1. Aysu Okbay
  2. Jonathan P. Beauchamp
  3. Mark Alan Fontana
  4. James J. Lee
  5. Tune H. Pers
  6. Cornelius A. Rietveld
  7. Patrick Turley
  8. Guo-Bo Chen
  9. Valur Emilsson
  10. S. Fleur W. Meddens
  11. Joseph K. Pickrell
  12. Kevin Thom
  13. Pascal Timshel
  14. Ronald de Vlaming
  15. Abdel Abdellaoui
  16. Tarunveer S. Ahluwalia
  17. Jonas Bacelis
  18. Clemens Baumbach
  19. Gyda Bjornsdottir
  20. Johannes H. Brandsma
  21. Maria Pina Concas
  22. Jaime Derringer
  23. Nicholas A. Furlotte
  24. Tessel E. Galesloot
  25. Giorgia Girotto
  26. Richa Gupta
  27. Leanne M. Hall
  28. Sarah E. Harris
  29. Edith Hofer
  30. Momoko Horikoshi
  31. Jennifer E. Huffman
  32. Kadri Kaasik
  33. Ioanna P. Kalafati
  34. Robert Karlsson
  35. Augustine Kong
  36. Jari Lahti
  37. Sven J. van der Lee
  38. Christiaan deLeeuw
  39. Penelope A. Lind
  40. Karl-Oskar Lindgren
  41. Tian Liu
  42. Massimo Mangino
  43. Jonathan Marten
  44. Evelin Mihailov
  45. Michael B. Miller
  46. Peter J. van der Most
  47. Christopher Oldmeadow
  48. Antony Payton
  49. Natalia Pervjakova
  50. Wouter J. Peyrot
  51. Yong Qian
  52. Olli Raitakari
  53. Rico Rueedi
  54. Erika Salvi
  55. Börge Schmidt
  56. Katharina E. Schraut
  57. Jianxin Shi
  58. Albert V. Smith
  59. Raymond A. Poot
  60. Beate St Pourcain
  61. Alexander Teumer
  62. Gudmar Thorleifsson
  63. Niek Verweij
  64. Dragana Vuckovic
  65. Juergen Wellmann
  66. Harm-Jan Westra
  67. Jingyun Yang
  68. Wei Zhao
  69. Zhihong Zhu
  70. Behrooz Z. Alizadeh
  71. Najaf Amin
  72. Andrew Bakshi
  73. Sebastian E. Baumeister
  74. Ginevra Biino
  75. Klaus Bønnelykke
  76. Patricia A. Boyle
  77. Harry Campbell
  78. Francesco P. Cappuccio
  79. Gail Davies
  80. Jan-Emmanuel De Neve
  81. Panos Deloukas
  82. Ilja Demuth
  83. Jun Ding
  84. Peter Eibich
  85. Lewin Eisele
  86. Niina Eklund
  87. David M. Evans
  88. Jessica D. Faul
  89. Mary F. Feitosa
  90. Andreas J. Forstner
  91. Ilaria Gandin
  92. Tamara B. Harris
  93. Andrew C. Heath
  94. Lynne J. Hocking
  95. Elizabeth G. Holliday
  96. Georg Homuth
  97. Michael A. Horan
  98. Jouke-Jan Hottenga
  99. Philip L. de Jager
  100. Peter K. Joshi
  101. Astanand Jugessur
  102. Marika A. Kaakinen
  103. Mika Kähönen
  104. Stavroula Kanoni
  105. Liisa Keltigangas-Järvinen
  106. Lambertus A. L. M. Kiemeney
  107. Ivana Kolcic
  108. Seppo Koskinen
  109. Aldi T. Kraja
  110. Martin Kroh
  111. Zoltan Kutalik
  112. Antti Latvala
  113. Lenore J. Launer
  114. Maël P. Lebreton
  115. Douglas F. Levinson
  116. Paul Lichtenstein
  117. Peter Lichtner
  118. David C. M. Liewald
  119. LifeLines Cohort Study
  120. Anu Loukola
  121. Pamela A. Madden
  122. Reedik Mägi
  123. Tomi Mäki-Opas
  124. Riccardo E. Marioni
  125. Pedro Marques-Vidal
  126. Gerardus A. Meddens
  127. George McMahon
  128. Christa Meisinger
  129. Thomas Meitinger
  130. Yusplitri Milaneschi
  131. Lili Milani
  132. Grant W. Montgomery
  133. Ronny Myhre
  134. Christopher P. Nelson
  135. Dale R. Nyholt
  136. William E. R. Ollier
  137. Aarno Palotie
  138. Lavinia Paternoster
  139. Nancy L. Pedersen
  140. Katja E. Petrovic
  141. David J. Porteous
  142. Katri Räikkönen
  143. Susan M. Ring
  144. Antonietta Robino
  145. Olga Rostapshova
  146. Igor Rudan
  147. Aldo Rustichini
  148. Veikko Salomaa
  149. Alan R. Sanders
  150. Antti-Pekka Sarin
  151. Helena Schmidt
  152. Rodney J. Scott
  153. Blair H. Smith
  154. Jennifer A. Smith
  155. Jan A. Staessen
  156. Elisabeth Steinhagen-Thiessen
  157. Konstantin Strauch
  158. Antonio Terracciano
  159. Martin D. Tobin
  160. Sheila Ulivi
  161. Simona Vaccargiu
  162. Lydia Quaye
  163. Frank J. A. van Rooij
  164. Cristina Venturini
  165. Anna A. E. Vinkhuyzen
  166. Uwe Völker
  167. Henry Völzke
  168. Judith M. Vonk
  169. Diego Vozzi
  170. Johannes Waage
  171. Erin B. Ware
  172. Gonneke Willemsen
  173. John R. Attia
  174. David A. Bennett
  175. Klaus Berger
  176. Lars Bertram
  177. Hans Bisgaard
  178. Dorret I. Boomsma
  179. Ingrid B. Borecki
  180. Ute Bültmann
  181. Christopher F. Chabris
  182. Francesco Cucca
  183. Daniele Cusi
  184. Ian J. Deary
  185. George V. Dedoussis
  186. Cornelia M. van Duijn
  187. Johan G. Eriksson
  188. Barbara Franke
  189. Lude Franke
  190. Paolo Gasparini
  191. Pablo V. Gejman
  192. Christian Gieger
  193. Hans-Jörgen Grabe
  194. Jacob Gratten
  195. Patrick J. F. Groenen
  196. Vilmundur Gudnason
  197. Pim van der Harst
  198. Caroline Hayward
  199. David A. Hinds
  200. Wolfgang Hoffmann
  201. Elina Hyppönen
  202. William G. Iacono
  203. Bo Jacobsson
  204. Marjo-Riitta Järvelin
  205. Karl-Heinz Jöckel
  206. Jaakko Kaprio
  207. Sharon L. R. Kardia
  208. Terho Lehtimäki
  209. Steven F. Lehrer
  210. Patrik K. E. Magnusson
  211. Nicholas G. Martin
  212. Matt McGue
  213. Andres Metspalu
  214. Neil Pendleton
  215. Brenda W. J. H. Penninx
  216. Markus Perola
  217. Nicola Pirastu
  218. Mario Pirastu
  219. Ozren Polasek
  220. Danielle Posthuma
  221. Christine Power
  222. Michael A. Province
  223. Nilesh J. Samani
  224. David Schlessinger
  225. Reinhold Schmidt
  226. Thorkild I. A. Sørensen
  227. Tim D. Spector
  228. Kari Stefansson
  229. Unnur Thorsteinsdottir
  230. A. Roy Thurik
  231. Nicholas J. Timpson
  232. Henning Tiemeier
  233. Joyce Y. Tung
  234. André G. Uitterlinden
  235. Veronique Vitart
  236. Peter Vollenweider
  237. David R. Weir
  238. James F. Wilson
  239. Alan F. Wright
  240. Dalton C. Conley
  241. Robert F. Krueger
  242. George Davey Smith
  243. Albert Hofman
  244. David I. Laibson
  245. Sarah E. Medland
  246. Michelle N. Meyer
  247. Jian Yang
  248. Magnus Johannesson
  249. Peter M. Visscher
  250. Tõnu Esko
  251. Philipp D. Koellinger
  252. David Cesarini
  253. Daniel J. Benjamin

Contributions

Study design and management: D.J.B., D.Ce., T.E., M.J., P.D.K. and P.M.V. Quality control and meta-analysis: A.O., G.B.C., T.E., M.A.F., C.A.R. and T.H.P. Stratification: P.T., J.P.B., C.A.R. and J.Y. Genetic overlap: J.P.B., M.A.F., P.T. Biological annotation: J.J.L., T.E., T.H.P., J.K.P., J.H.B., J.P.B., L.F., V.E., G.A.M., M.A.F., S.F.W.M., P.Ti., R.A.P., R.d.V. and H.J.W. Prediction and mediation: J.P.B., M.A.F. and J.Y. G×E: D.Co., S.F.L., K.O.L., S.O. and K.T. Replication in UKB: M.A.F. and C.A.R. SSGAC advisory board: D.Co., T.E., A.H., R.F.K., D.I.L., S.E.M., M.N.M., G.D.S. and P.M.V. All authors contributed to and critically reviewed the manuscript. Authors not listed above contributed to the recruitment, genotyping, or data processing for the contributing components of the meta-analysis. For a full list of author contributions, see Supplementary Information section 8.

Corresponding authors

Correspondence toPeter M. Visscher, Philipp D. Koellinger, David Cesarini or Daniel J. Benjamin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Results can be downloaded from the SSGAC website (http://ssgac.org/Data.php). Data for our analyses come from many studies and organizations, some of which are subject to a MTA, and are listed in the Supplementary Information.

Extended data figures and tables

Extended Data Figure 1 Q–Q plot of the genome-wide association meta-analysis of 64 EduYears results files (n = 293,723).

Observed and expected P values are on a −log10 scale (two-tailed). The grey region depicts the 95% confidence interval under the null hypothesis of a uniform P value distribution. The observed _λ_GC is 1.28. (As reported in Supplementary Information section 1.5.4, the unweighted mean _λ_GC is 1.02, the unweighted median is 1.01, and the range across cohorts is 0.95–1.15.)

Extended Data Figure 2 The distribution of effect sizes of the 74 lead SNPs.

a, SNPs ordered by absolute value of the standardized effect of one more copy of the education-increasing allele, with 95% confidence intervals. b, SNPs ordered by _R_2. Effects on EduYears are benchmarked against the top 74 genome-wide significant hits identified in the largest GWAS conducted to date of height and body mass index (BMI), and the 48 associations reported for waist-to-hip ratio adjusted for BMI (WHR). These results are based on the GIANT consortium’s publicly available results for pooled analyses restricted to European-ancestry individuals: https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium.

Extended Data Figure 3 Assessing the extent to which population stratification affects the estimates from the GWAS.

a, LD score regression plot with the summary statistics from the GWAS. Each point represents an LD score quantile for a chromosome (the x and y coordinates of the point are the mean LD score and the mean _χ_2 statistic of variants in that quantile). That the intercept is close to 1 and that the _χ_2 statistics increase linearly with the LD scores suggest that the bulk of the inflation in the _χ_2 statistics is due to true polygenic signal and not to population stratification. b, Estimates and 95% confidence intervals from individual-level and within-family regressions of EduYears on polygenic scores, for scores constructed with sets of SNPs meeting different P value thresholds. In addition to the analyses shown here, we conduct a sign concordance test, and we decompose the variance of the polygenic score. Overall, these analyses suggest that population stratification is unlikely to be a major concern for our 74 lead SNPs. See Supplementary Information section 3 for additional details.

Extended Data Figure 4 Replication of 74 lead SNPs in the UK Biobank data.

Estimated effect sizes (in years of schooling) and 95% confidence intervals of the 74 lead SNPs in the meta-analysis sample (n = 293,723) and the UK Biobank replication sample (n = 111,349). The reference allele is the allele associated with higher values of EduYears in the meta-analysis sample. SNPs are in descending order of _R_2 in the meta-analysis sample. Of the 74 lead SNPs, 72 have the anticipated sign in the replication sample, 52 replicate at the 0.05 significance level, and 7 replicate at the 5 × 10−8 significance level.

Extended Data Figure 5 Q–Q plots for the 74 lead EduYears SNPs (or LD proxies) in published GWAS of other phenotypes.

SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are blue. SNPs outside the grey area pass Bonferroni-corrected significance thresholds that correct for the total number of SNPs we tested (P < 0.05/74 = 6.8 × 10−4) and are labelled with their rs numbers. Observed and expected P values are on a −log10 scale. For the sign concordance test: *P < 0.05, **P < 0.01 and ***P < 0.001.

Extended Data Figure 6 Regional association plots for four of the ten prioritized SNPs for mental health, brain anatomy, and anthropometric phenotypes identified using EduYears as a proxy phenotype.

a, Cognitive performance; b, hippocampus; c, intracranial volume; d, neuroticism. The four were selected because very few genome-wide significant SNPs have been previously reported for these traits. Data sources and methods are described in Supplementary Information section 3. The _R_2 values are from the hg19 / 1000 Genomes Nov 2014 EUR references samples. The figures were created with LocusZoom (http://csg.sph.umich.edu/locuszoom/). Mb, megabases.

Extended Data Figure 7 Application of fgwas to EduYears.

See Supplementary Information section 4.2 for further details. a, The results of single-annotation models. ‘Enrichment’ refers to the factor by which the prior odds of association at an LD-defined region must be multiplied if the region bears the given annotation; this factor is estimated using an empirical Bayes method applied to all SNPs in the GWAS meta-analysis regardless of statistical significance. Annotations were derived from ENCODE and a number of other data sources. Plotted are the base 2 logarithms of the enrichments and their 95% confidence intervals. Multiple instances of the same annotation correspond to independent replicates of the same experiment. b, The results of combining multiple annotations and applying model selection and cross-validation. Although the maximum-likelihood estimates are plotted, model selection was performed with penalized likelihood. c, Reweighting of GWAS loci. Each point represents an LD-defined region of the genome, and shown are the regional posterior probabilities of association (PPAs). The x axis gives the PPA calculated from the GWAS summary statistics alone, whereas the y axis gives the PPA upon reweighting on the basis of the annotations in b. The orange points represent genomic regions where the PPA is equivalent to the standard GWAS significance threshold only upon reweighting.

Extended Data Figure 8 Tissue-level biological annotation.

a, The enrichment factor for a given tissue type is the ratio of variance explained by SNPs in that group to the overall fraction of SNPs in that group. To benchmark the estimates for EduYears, we compare the enrichment factors to those obtained when we use the largest GWAS conducted to date on BMI, height, and waist-to-hip ratio adjusted for BMI. The estimates were produced with the LDSC Python software, using the LD scores and functional annotations introduced in ref. 17 and the HapMap3 SNPs with minor allele frequency >0.05. Each of the ten enrichment calculations for a particular cell type is performed independently, while each controlling for the 52 functional annotation categories in the full baseline model. The error bars show the 95% confidence intervals. b, We took measurements of gene expression by the Genotype-Tissue Expression (GTEx) Consortium and determined whether the genes overlapping EduYears-associated loci are significantly overexpressed (relative to genes in random sets of loci matched by gene density) in each of 37 tissue types. These types are grouped in the panel by organ. The dark bars correspond to tissues where there is significant overexpression. The y axis is the significance on a −log10 scale.

Extended Data Figure 9 Gene-level biological annotation.

a, The DEPICT-prioritized genes for EduYears measured in the BrainSpan Developmental Transcriptome data (red curve) are more strongly expressed in the brain prenatally rather than postnatally. The DEPICT-prioritized genes exhibit similar gene expression levels across different brain regions (grey lines). Analyses were based on log2-transformed RNA-seq data. Error bars represent 95% confidence intervals. b, For each phenotype and disorder, we calculated the overlap between the phenotype’s DEPICT-prioritized genes and genes believed to harbour de novo mutations causing the disorder. The bars correspond to odds ratios. c, DEPICT-prioritized genes in EduYears-associated loci exhibit substantial overlap with genes previously reported to harbour sites where mutations increase risk of intellectual disability and autism spectrum disorder (Supplementary Table 4.6.1).

Extended Data Figure 10 The predictive power of a polygenic score (PGS) varies in Sweden by birth cohort.

Five-year rolling regressions of years of education on the PGS (left axis in all four panels), share of individuals not affected by the comprehensive school reform (a, right axis), and average distance to nearest junior high school (b, right axis), nearest high school (c, right axis) and nearest college/university (d, right axis). The shaded area displays the 95% confidence intervals for the PGS effect.

Supplementary information

PowerPoint slides

Rights and permissions

About this article

Cite this article

Okbay, A., Beauchamp, J., Fontana, M. et al. Genome-wide association study identifies 74 loci associated with educational attainment.Nature 533, 539–542 (2016). https://doi.org/10.1038/nature17671

Download citation