Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest (original) (raw)

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Hampson, K. et al. Predictability of anthrax infection in the Serengeti, Tanzania. J. Appl. Ecol. 48, 1333–1344 (2011)
    Article PubMed PubMed Central Google Scholar
  2. Hugh-Jones, M. E. & de Vos, V. Anthrax and wildlife. Rev. Sci. Tech. 21, 359–383 (2002)
    Article CAS PubMed Google Scholar
  3. Lindeque, P. M. & Turnbull, P. C. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J. Vet. Res. 61, 71–83 (1994)
    CAS PubMed Google Scholar
  4. Beyer, W. & Turnbull, P. C. Anthrax in animals. Mol. Aspects Med. 30, 481–489 (2009)
    Article CAS PubMed Google Scholar
  5. Turnbull, P. C. B. WHO Guidelines Approved by the Guidelines Review Committee (World Health Organization, Department of Communicable Diseases Surveillance and Response, 2008)
  6. Good, K. M., Houser, A., Arntzen, L. & Turnbull, P. C. Naturally acquired anthrax antibodies in a cheetah (Acinonyx jubatus) in Botswana. J. Wildl. Dis. 44, 721–723 (2008)
    Article PubMed Google Scholar
  7. Wafula, M. M., Patrick, A. & Charles, T. Managing the 2004/05 anthrax outbreak in Queen Elizabeth and Lake Mburo National Parks, Uganda. Afr. J. Ecol. 46, 24–31 (2008)
    Article Google Scholar
  8. Clegg, S. B., Turnbull, P. C., Foggin, C. M. & Lindeque, P. M. Massive outbreak of anthrax in wildlife in the Malilangwe Wildlife Reserve, Zimbabwe. Vet. Rec. 160, 113–118 (2007)
    Article CAS PubMed Google Scholar
  9. Muoria, P. K. et al. Anthrax outbreak among Grevy’s zebra (Equus grevyi) in Samburu, Kenya. Afr. J. Ecol. 45, 483–489 (2007)
    Article Google Scholar
  10. Turnbull, P. C. et al. Anthrax in wildlife in the Luangwa Valley, Zambia. Vet. Rec. 128, 399–403 (1991)
    Article CAS PubMed Google Scholar
  11. de Vos, V. The ecology of anthrax in the Kruger National Park, South Africa. Salisbury Med. Bull. 68 (Suppl), 19–23 (1990)
    Google Scholar
  12. Lembo, T. et al. Serologic surveillance of anthrax in the Serengeti ecosystem, Tanzania, 1996–2009. Emerg. Infect. Dis. 17, 387–394 (2011)
    Article PubMed PubMed Central Google Scholar
  13. Beyer, W. et al. Distribution and molecular evolution of Bacillus anthracis genotypes in Namibia. PLoS Negl. Trop. Dis. 6, e1534 (2012)
    Article CAS PubMed PubMed Central Google Scholar
  14. Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430, 451–452 (2004)
    Article ADS CAS PubMed Google Scholar
  15. Klee, S. R. et al. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS ONE 5, e10986 (2010)
    Article ADS CAS PubMed PubMed Central Google Scholar
  16. Brézillon, C. et al. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis. PLoS Negl. Trop. Dis. 9, e0003455 (2015)
    Article CAS PubMed PubMed Central Google Scholar
  17. Antonation, K. S. et al. Bacillus cereus biovar anthracis causing anthrax in sub-Saharan Africa—chromosomal monophyly and broad geographic distribution. PLoS Negl. Trop. Dis. 10, e0004923 (2016)
    Article CAS PubMed PubMed Central Google Scholar
  18. Leendertz, F. H. et al. Anthrax in western and central African great apes. Am. J. Primatol. 68, 928–933 (2006)
    Article PubMed Google Scholar
  19. Calvignac-Spencer, S. et al. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol. Ecol. 22, 915–924 (2013)
    Article CAS PubMed Google Scholar
  20. Berry, H. H. Surveillance and control of anthrax and rabies in wild herbivores and carnivores in Namibia. Rev. Sci. Tech. 12, 137–146 (1993)
    Article CAS PubMed Google Scholar
  21. Vergnaud, G. et al. Comparison of French and worldwide Bacillus anthracis strains favors a recent, post-Columbian origin of the predominant North-American clade. PLoS ONE 11, e0146216 (2016)
    Article CAS PubMed PubMed Central Google Scholar
  22. Smith, K. L. et al. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microbiol. 38, 3780–3784 (2000)
    CAS PubMed PubMed Central Google Scholar
  23. Campbell, G., Kuehl, H., Diarrassouba, A., N’Goran, P. K. & Boesch, C. Long-term research sites as refugia for threatened and over-harvested species. Biol. Lett. 7, 723–726 (2011)
    Article CAS PubMed PubMed Central Google Scholar
  24. Blackburn, J. K., Van Ert, M., Mullins, J. C., Hadfield, T. L. & Hugh-Jones, M. E. The necrophagous fly anthrax transmission pathway: empirical and genetic evidence from wildlife epizootics. Vector Borne Zoonotic Dis. 14, 576–583 (2014)
    Article PubMed Google Scholar
  25. Hill, K. et al. Mortality rates among wild chimpanzees. J. Hum. Evol. 40, 437–450 (2001)
    Article CAS PubMed Google Scholar
  26. Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008)
    Article CAS PubMed Google Scholar
  27. Boesch, C & Boesch-Achermann, H. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution (Oxford Univ. Press, 2000)
  28. Turnbull, P. C. B. Guidelines for the Surveillance and Control of Anthrax in Humans and Animals 3rd edn (World Health Organization, Department of Communicable Diseases Surveillance and Response, 1998)
  29. Ellerbrok, H. et al. Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiol. Lett. 214, 51–59 (2002)
    Article CAS PubMed Google Scholar
  30. Klee, S. R. et al. Characterization of _Bacillus anthracis_-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 188, 5333–5344 (2006)
    Article CAS PubMed PubMed Central Google Scholar
  31. Panning, M. et al. Diagnostic reverse-transcription polymerase chain reaction kit for filoviruses based on the strain collections of all European biosafety level 4 laboratories. J. Infect. Dis. 196 (Suppl 2), S199–S204 (2007)
    Article CAS PubMed Google Scholar
  32. Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007)
    Article Google Scholar
  33. Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016)
    Article CAS PubMed Google Scholar
  34. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007)
    Article CAS PubMed Google Scholar
  35. Buffalo, V. Scythe: a 3′-end adapter contaminant trimmer. https://github.com/vsbuffalo/scythe (2014)
  36. Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle (2011)
  37. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013)
  38. Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 11.10.1–11.10. 33 (2013)
    Google Scholar
  39. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011)
    Article CAS PubMed PubMed Central Google Scholar
  40. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)
    Article CAS PubMed PubMed Central Google Scholar
  41. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012)
    Article PubMed PubMed Central Google Scholar
  42. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012)
    Article CAS PubMed PubMed Central Google Scholar
  43. Posada, D. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Curr. Protoc. Bioinform. 00, 6.5.1–6.5.14 (2003)
    Article Google Scholar
  44. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)
    Article CAS PubMed Google Scholar
  45. Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016)
    Article PubMed PubMed Central Google Scholar
  46. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012)
    Article CAS PubMed PubMed Central Google Scholar
  47. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006)
    Article CAS PubMed PubMed Central Google Scholar
  48. Kimura, M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl Acad. Sci. USA 78, 454–458 (1981)
    Article ADS CAS PubMed MATH PubMed Central Google Scholar
  49. Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics using R (Cambridge Univ. Press, 2008)
  50. McCullagh, P. & Nelder, J. A. Generalized Linear Models Vol. 37 (CRC, 1989)
  51. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 225–278 (2013)
    Article Google Scholar
  52. Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009)
    Article PubMed Google Scholar
  53. Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011)
    Article PubMed Google Scholar
  54. Dobson, A. J & Barnett, A. An Introduction to Generalized Linear Models (CRC, 2008)
  55. R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2013)
  56. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015)
    Article Google Scholar
  57. Ersts, P. Geographic Distance Matrix Generator (version 1.2.3). http://biodiversityinformatics.amnh.org/open_source/gdmg (American Museum of Natural History, 2011)
  58. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004)
    Article CAS PubMed Google Scholar
  59. Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007)
    Article Google Scholar
  60. Kuehl, H. S., Elzner, C., Moebius, Y., Boesch, C. & Walsh, P. D. The price of play: self-organized infant mortality cycles in chimpanzees. PLoS ONE 3, e2440 (2008)
    Article ADS CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

We thank the authorities in Côte d’Ivoire for long-term support, especially the Ministry of the Environment and Forests, the Ministry of Research, the directorship of the TNP and the CSRS in Abidjan; and national authorities from all other countries for providing permissions for our research (MINFoF, MINRESI, the Service de la Conservation de la Réserve du Dja, Cameroon, in Central African Republic; the Ministère des Eaux et Fôrets, Chasse et Peche and the Ministère de l’Education Nationale, de l’Alphabetisation, de l’Enseignement Superieur, et de la Recherche, the Agence Nationale des Parcs Nationaux, Gabon; Centre National de la Recherche Scientifique et Technologique, Gabon; Direction des Eaux, Forêts et Chasses, Senegal; Forestry Development Authority, Liberia; Institut Congolais pour la Conservation de la Nature, Democratic Republic of the Congo; Ministère de l’Agriculture de l’Elevage et des Eaux et Forêts, Guinea; Instituto da Biodiversidade e das Áreas Protegidas (IBAP), Guinea-Bissau; Ministère de la Recherche Scientifique, Democratic Republic of the Congo; Ministère de le Recherche Scientifique et Technologique, Democratic Republic of the Congo; Nigeria National Park Service, Nigeria, Uganda National Council for Science and Technology, Ugandan Wildlife Authority, Uganda). We thank the WWF Central African Republic, T. Börding, T. Hicks, Y. Moebius, V. Sommer, K. Zuberbühler and M. Peeters for their logistical support; the field assistants A. Henlin, K. Albrechtova and A. Lang for the collection of samples in TNP; and the field assistants from all other sites for their support; S. Becker, T. Franz, S. Howaldt, A. Lander, P. Lochau, H. Nattermann and A. Schneider for the laboratory work; J. Hinzmann, A. Nitsche and J. Tesch for sequencing; P. Wojciech Dabrowski and T. Semmler from RKI, as well as G. Hamilton at Glasgow Polyomics, for bioinformatic support; and M. Kovacev-Wegener for administrative support. We thank the German Research Council DFG KL 2521/1-1 and the Sonnenfeld-Stiftung for funding; and the Max-Planck-Society and Krekeler Foundation for funding of the Pan African Programme.

Author information

Author notes

  1. Constanze Hoffmann and Fee Zimmermann: These authors contributed equally to this work.

Authors and Affiliations

  1. Robert Koch Institute, P3: “Epidemiology of Highly Pathogenic Microorganisms”, Seestraße 10–11, Berlin, 13353, Germany
    Constanze Hoffmann, Fee Zimmermann, Kathrin Nowak, Anja Blankenburg, Ariane Düx, Jan F. Gogarten, Siv Aina Leendertz, Floraine Léguillon, Therese Löhrich, Kevin Merkel, Sonja Metzger, Svenja Niedorf, Hélène De Nys, Andreas Sachse, Ulla Thiesen, Doris Wu, Sébastien Calvignac-Spencer & Fabian H. Leendertz
  2. Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Seestraße 10–11, Berlin, 13353, Germany
    Fee Zimmermann, Susann Dupke, Roland Grunow & Silke R. Klee
  3. Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
    Roman Biek
  4. Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, Leipzig, 04103, Germany
    Hjalmar Kuehl, Roger Mundry, Anthony Agbor, Samuel Angedakin, Mimi Arandjelovic, Gregory Brazolla, Katherine Corogenes, Tobias Deschner, Paula Dieguez, Karsten Dierks, Henk Eshuis, Yisa Ginath Yuh, Jan F. Gogarten, Anne-Céline Granjon, Sorrel Jones, Jessica Junker, Juan Lapuente, Kevin Lee, Therese Löhrich, Sergio Marrocoli, Amelia Meier, Mizuki Murai, Hélène De Nys, Joost van Schijndel, Doris Wu, Christophe Boesch & Roman M. Wittig
  5. LANADA/LCVB, Bingerville, 206, Côte d’Ivoire
    Emmanuel Couacy-Hymann
  6. World Health Organization, Geneva 27, 1211, Switzerland
    Pierre Formenty
  7. Chimbo Foundation, Amstel 49, Amsterdam, 1011 PW, The Netherlands
    Annemarie Goedmakers & Els Ton
  8. Department of Biology, McGill University, 855 Sherbrooke Street, West Montreal, H3A 2T7, Quebec, Canada
    Jan F. Gogarten
  9. Department of Anthropology, The Ohio State University, 4034 Smith Laboratory, 174 West 18th Avenue, Columbus, 43210, Ohio, USA
    Scott McGraw
  10. Lukuru Foundation, 1235 Avenue des Poids Lourds/Quartier de Kingabois, Kinshasa, Democratic Republic of the Congo
    John Hart
  11. Limbe Wildlife Centre, Limbe, Cameroon
    John Kiang
  12. Arizona State University, PO Box 872402, Tempe, 85287-2402, Arizona, USA
    Kevin Langergraber
  13. Wild Chimpanzee Foundation (WCF), Deutscher Platz 6, Leipzig, 04103, Germany
    Vera Leinert
  14. German Primate Center, Kellnerweg 4, Göttingen, 37077, Germany
    Kerstin Mätz-Rensing
  15. Robert Koch Institute, Seestraße 10–11, Berlin, 13353, Germany
    Lothar H. Wieler

Authors

  1. Constanze Hoffmann
  2. Fee Zimmermann
  3. Roman Biek
  4. Hjalmar Kuehl
  5. Kathrin Nowak
  6. Roger Mundry
  7. Anthony Agbor
  8. Samuel Angedakin
  9. Mimi Arandjelovic
  10. Anja Blankenburg
  11. Gregory Brazolla
  12. Katherine Corogenes
  13. Emmanuel Couacy-Hymann
  14. Tobias Deschner
  15. Paula Dieguez
  16. Karsten Dierks
  17. Ariane Düx
  18. Susann Dupke
  19. Henk Eshuis
  20. Pierre Formenty
  21. Yisa Ginath Yuh
  22. Annemarie Goedmakers
  23. Jan F. Gogarten
  24. Anne-Céline Granjon
  25. Scott McGraw
  26. Roland Grunow
  27. John Hart
  28. Sorrel Jones
  29. Jessica Junker
  30. John Kiang
  31. Kevin Langergraber
  32. Juan Lapuente
  33. Kevin Lee
  34. Siv Aina Leendertz
  35. Floraine Léguillon
  36. Vera Leinert
  37. Therese Löhrich
  38. Sergio Marrocoli
  39. Kerstin Mätz-Rensing
  40. Amelia Meier
  41. Kevin Merkel
  42. Sonja Metzger
  43. Mizuki Murai
  44. Svenja Niedorf
  45. Hélène De Nys
  46. Andreas Sachse
  47. Joost van Schijndel
  48. Ulla Thiesen
  49. Els Ton
  50. Doris Wu
  51. Lothar H. Wieler
  52. Christophe Boesch
  53. Silke R. Klee
  54. Roman M. Wittig
  55. Sébastien Calvignac-Spencer
  56. Fabian H. Leendertz

Contributions

C.H., F.Z., A.A., S.A., M.A., G.B., K.C., T.D., P.D., K.D., H.E., P.F., Y.G.Y., A.G., A.-C.G., S.McG., J.H., S.J., J.J., J.K., K.La., J.L., K.Le., F.L., V.L., T.L., S.Ma., A.M., S.Me., M.M., J.v.S., E.T. and D.W. collected flies, bones and associated field data. Necropsies on wildlife that was found dead were performed by F.Z., K.N., A.B., E.C.-H., A.D., P.F., S.A.L., T.L., S.Me., S.N., H.D.N. and F.H.L. and laboratory analyses were performed by C.H., F.Z., K.N., S.D., R.G., K.M.-R., K.M., S.Me., H.D.N., A.S., U.T., S.R.K., L.H.W., S.C.-S. and F.H.L. The data were analysed by C.H., F.Z., R.B., H.K., R.M. and S.C.-S. and the manuscript was prepared by C.H., F.Z., R.B., H.K., R.M., J.F.G., S.C.-S. and F.H.L. The manuscript was revised and approved by all authors. The study was supervised by C.B., R.M.W., S.C.-S. and F.H.L.

Corresponding author

Correspondence toFabian H. Leendertz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Necropsies performed since 1996.

The total number of necropsies performed per year in TNP from 1996 to 2015. Grey bars indicate the number of Bcbva-positive necropsies and are annotated with the associated proportion. In the years 2003 and 2010 only limited veterinary service was available at TNP owing to political insecurity in the region.

Extended Data Figure 2 Geographic location of Bcbva-positive carcasses in TNP.

Necropsies that tested Bcbva-positive in TNP since 2001. GPS data was available for 70 of all necropsies that tested positive (n = 81).

Extended Data Figure 3 Effect of mammalian DNA content on anthrax positivity in flies.

Shown is the probability of Bcbva positivity (PA) as a function of the amount of mammalian DNA (copies) found in a fly. The amount of mammal DNA was binned (bin width of 0.25) and the area of the points depicts the number of flies (range, 1–206) in the respective bins. The dashed line indicates the fitted model and the dotted lines the 95% confidence interval.

Extended Data Figure 4 Effect of season on anthrax positivity in flies.

The probability of Bcbva positivity (PA) over the course of a year (binned in 10-day periods) is shown. The area of the points depicts the number of flies in the respective 10-day period. The dashed line indicates the fitted model and the dotted lines the 95% confidence interval.

Extended Data Figure 5 Maximum clade credibility tree based on chromosomal sequences of Bcbva isolates from TNP (Côte d’Ivoire, n = 124) and Grebo (Liberia, n = 2).

One sequence per host (mammals or flies, two divergent isolates for fly 600) was included and the final alignment of variant sites measured 298 bp. The size of the nodes represents posterior probability values. The location of the root received a posterior probability of 1.

Extended Data Figure 6 Maximum likelihood tree for sub-Saharan Bcbva strains.

Maximum likelihood tree based on chromosomal sequences of Bcbva strains from Côte d’Ivoire, Cameroon, Central African Republic and Liberia. The alignment of variant sites measured 1,016 bp. Bootstrap values are shown above the branches and the scale bar indicates substitution per chromosomal site. The tree was rooted using TempEst version 1.5.

Extended Data Figure 7 Fly snapshot sampling scheme.

For the fly snapshot, flies were caught following a 2 × 2-km grid system within and outside the research area within 19 days. In total 908 snapshot flies were analysed.

Extended Data Figure 8 Genetic and geographic distances of Bcbva isolates from the fly snapshot.

a, Maximum likelihood tree based on chromosomal sequences of Bcbva isolates from the 19-day fly snapshot. Each dot represents one fly isolate. Colours were chosen to illustrate the distribution of genetically clustering isolates on the map presented in b. The final alignment of variant sites measured 123 bp. Bootstrap values are shown above all internal branches. The tree was rooted using the ‘best-fit’ option in Path-O-Gen version 1.2. The scale bar shows substitutions per site. b, Geographic origin of Bcbva isolates collected during the fly snapshot. Colours correspond to maximum likelihood tree in a. Large circles represent two isolates.

Extended Data Figure 9 Box plot of genetic and mean geographic distances.

Bcbva isolates from TNP were binned by relative genetic distance (bin size = 0.03, approximately 2.5 SNPs).The two most genetically distant isolates received a value of 1 and all other distances were scaled accordingly. Diamonds indicate the geographic distance means of the groups. To examine variation within genetic lineages, we analysed isolates with low genetic distance (maximum relative genetic distance <0.5, marked in blue) and their mean geographic distance. For low genomic distances, the linear regression of geographic distances on genetic distances has an _R_2 of 0.72 and a slope coefficient that differs significantly from zero (Student’s _t_-test, P = 4 × 10−5).

Extended Data Figure 10 Fly species composition based on generalized mixed Yule-coalescent model (GMYC) analysis.

ac, Fly species composition for three sites with known Bcbva occurrence: TNP, Côte d’Ivoire (a); Dja Faunal Reserve, Cameroon (b); Dzanga-Sangha Protected Areas, Central African Republic (c). The proportions of flies per site (%) belonging to a single fly species identified with GMYC models are shown. Different colours indicate different taxonomic fly families.

Supplementary information

Supplementary Information

This file contains a detailed method section as well as additional tables (Tables S1-10) and figures (Fig. S1-8). (PDF 2638 kb)

Supplementary Table 1

This file contains results that were derived from the analyses of flies caught in TNP analyzed in this study. The file includes results from PCR and culture as well as flymeal analysis results for a selection of flies. (XLSX 148 kb)

Supplementary Table 2

This file contains results of fly meal analysis with taxonomic assignment at genus level. The file provides the number of sequences per amplicon assigned at genus level. (XLSX 97 kb)

Supplementary Table 3

This file contains results of fly meal analysis with taxonomic assignment at order level. The file provides the number of sequences per amplicon assigned at order level. (XLSX 24 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Hoffmann, C., Zimmermann, F., Biek, R. et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest.Nature 548, 82–86 (2017). https://doi.org/10.1038/nature23309

Download citation