S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast (original) (raw)

References

  1. Nasmyth, K. At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412 (1996)
    Article CAS Google Scholar
  2. Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000)
    Article CAS Google Scholar
  3. Kelly, T. J. & Brown, G. W. Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880 (2000)
    Article CAS Google Scholar
  4. Kamimura, Y., Masumoto, H., Sugino, A. & Araki, H. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol. Cell. Biol. 18, 6102–6109 (1998)
    Article CAS Google Scholar
  5. Wong, H. & Elledge, S. J. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 3824–3829 (1999)
    Article ADS Google Scholar
  6. Araki, H., Leem, S.-H., Phongdara, A. & Sugino, A. Dpb11, which interacts with DNA polymerase II (ɛ) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc. Natl Acad. Sci. USA 92, 11791–11795 (1995)
    Article ADS CAS Google Scholar
  7. Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992)
    Article ADS CAS Google Scholar
  8. Diffley, J. F. X., Cocker, J. H., Dowell, S. J., Harwood, J. & Rowley, A. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle. J. Cell Sci. (Suppl.) 19, 67–72 (1995)
    Article CAS Google Scholar
  9. Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997)
    Article CAS Google Scholar
  10. Aparicio, O. M., Stout, A. M. & Bell, S. P. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl Acad. Sci. USA 96, 9130–9135 (1999)
    Article ADS CAS Google Scholar
  11. Zou, L. & Stillman, B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280, 593–596 (1998)
    Article ADS CAS Google Scholar
  12. Zou, L. & Stillman, B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin dependent kinases and Cdc7p-Dbf4p kinase. Mol. Cell. Biol. 20, 3086–3096 (2000)
    Article CAS Google Scholar
  13. Kamimura, Y., Tak, Y.-S., Sugino, A. & Araki, H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20, 2097–2107 (2001)
    Article CAS Google Scholar
  14. Johnston, L. H., Masai, H. & Sugino, A. First the CDKs, now the DDKs. Trends Cell Biol. 9, 249–252 (1999)
    Article CAS Google Scholar
  15. Tanaka, T. & Nasmyth, K. Association of RPA, with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17, 5182–5191 (1998)
    Article CAS Google Scholar
  16. Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases α and ɛ and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817 (2000)
    Article CAS Google Scholar
  17. Nguyen, V. Q., Co, C. & Li, J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068–1073 (2001)
    Article ADS CAS Google Scholar
  18. Labib, K., Diffley, J. F. X. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biol. 1, 415–422 (1999)
    Article CAS Google Scholar
  19. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000)
    Article CAS Google Scholar
  20. Elsasser, S., Chi, Y., Yang, P. & Campbell, J. L. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol. Biol. Cell 10, 3263–3277 (1999)
    Article CAS Google Scholar
  21. Drury, L. S., Perkins, G. & Diffley, J. F. X. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr. Biol. 10, 231–240 (2000)
    Article CAS Google Scholar
  22. Calzada, A., Sanchez, M., Sanchez, E. & Bueno, A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 9734–9741 (2000)
    Article CAS Google Scholar
  23. Din, S., Brill, S. J., Fairman, M. P. & Stillman, B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968–977 (1990)
    Article CAS Google Scholar
  24. Foiani, M., Liberi, G., Lucchini, G. & Plevani, P. Cell cycle-dependent phosphorylation and dephosphorylation of the yeast DNA polymerase α-primase B subunit. Mol. Cell. Biol. 15, 883–891 (1995)
    Article CAS Google Scholar
  25. Pearson, R. B. & Kemp, B. E. Protein kinase phosphorylation site sequences and consensus specificity motifs: Tabulations. Methods Enzymol. 200, 62–81 (1991)
    Article CAS Google Scholar
  26. Pondaven, P., Meijer, L. & Beach, D. Activation of M-phase-specific histone H1 kinase by modification of the phosphorylation of its p34cdc2 and cyclin components. Genes Dev. 4, 9–17 (1990)
    Article CAS Google Scholar
  27. Schwob, E., Böhm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994)
    Article CAS Google Scholar
  28. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992)
    Article CAS Google Scholar
  29. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)
    CAS PubMed PubMed Central Google Scholar
  30. Zachariae, W. et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: Identification of a subunit related to cullins. Science 279, 1216–1219 (1998)
    Article ADS CAS Google Scholar

Download references