Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase (original) (raw)
References
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000) ArticleADSCASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001) ArticleADSCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001) ArticleADSCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001) ArticleADSCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001) ArticleADSCASPubMed Google Scholar
Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science292, 2077–2080 (2001) ArticleCASPubMed Google Scholar
Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J.13, 3822–3831 (1994) ArticleCASPubMedPubMed Central Google Scholar
Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev.9, 218–233 (1995) ArticleCASPubMed Google Scholar
Ivanova, A. V., Bonaduce, M. J., Ivanov, S. V. & Klar, A. J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet.19, 192–195 (1998) ArticleCASPubMed Google Scholar
Peters, A. H. et al. Loss of the suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001) ArticleCASPubMed Google Scholar
Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science277, 1100–1103 (1997) ArticleCASPubMed Google Scholar
Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev.15, 1753–1758 (2001) ArticleCASPubMedPubMed Central Google Scholar
Baumbusch, L. O. et al. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res.29, 4319–4333 (2001) ArticleCASPubMedPubMed Central Google Scholar
Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem.276, 25309–25317 (2001) ArticleCASPubMed Google Scholar
Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA93, 8449–8454 (1996) ArticleADSCASPubMedPubMed Central Google Scholar
Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science273, 654–657 (1996) ArticleADSCASPubMed Google Scholar
Kishimoto, N. et al. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Mol. Biol.46, 171–183 (2001) ArticleCASPubMed Google Scholar
Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell6, 791–802 (2000) ArticleCASPubMed Google Scholar
Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science260, 1926–1928 (1993) ArticleADSCASPubMed Google Scholar
Henikoff, S. & Comai, L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics149, 307–318 (1998) CASPubMed CentralPubMed Google Scholar
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein–RNA interaction modules. Nature407, 405–409 (2000) ArticleADSCASPubMed Google Scholar
Gaudin, V. et al. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development128, 4847–4858 (2001) CASPubMed Google Scholar
Peters, A. H. F. M. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genet.30, 77–80 (2002) ArticleCASPubMed Google Scholar