A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans (original) (raw)

References

  1. Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000)
    Article ADS CAS PubMed Google Scholar
  2. Kimble, J. E. & White, J. G. On the control of germ cell development in Caenorhabditis elegans. Dev. Biol. 81, 208–219 (1981)
    Article CAS PubMed Google Scholar
  3. Schedl, T. in C. elegans II (ed. Priess, J. R.) 241–269 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997)
    Google Scholar
  4. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997)
    Article ADS CAS PubMed Google Scholar
  5. Francis, R., Barton, M. K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995)
    CAS PubMed PubMed Central Google Scholar
  6. Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813 (1998)
    CAS PubMed Google Scholar
  7. Wickens, M., Bernstein, D. S., Kimble, J. & Parker, R. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002)
    Article CAS PubMed Google Scholar
  8. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997)
    CAS PubMed Google Scholar
  9. Forbes, A. & Lehmann, R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679–690 (1998)
    CAS PubMed Google Scholar
  10. Souza, G. M., da Silva, A. M. & Kuspa, A. Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. Development 126, 3263–3274 (1999)
    CAS PubMed Google Scholar
  11. Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997)
    Article CAS PubMed Google Scholar
  12. Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998)
    Article CAS PubMed Google Scholar
  13. Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signalling pathway. Genetics 139, 607–630 (1995)
    CAS PubMed PubMed Central Google Scholar
  14. Jones, A. R., Francis, R. & Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol. 180, 165–183 (1996)
    Article CAS PubMed Google Scholar
  15. SenGupta, D. J. et al. A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl Acad. Sci. USA 93, 8496–8501 (1996)
    Article ADS CAS PubMed PubMed Central Google Scholar
  16. Bernstein, D. S., Buter, N., Stumpf, C. & Wickens, M. Analyzing mRNA–protein complexes using a yeast three-hybrid system: methods and applications. Methods 26(3), 123–141 (2002)
    Article Google Scholar
  17. Jones, A. R. & Schedl, T. Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev. 9, 1491–1504 (1995)
    Article CAS PubMed Google Scholar
  18. Jan, E., Motzny, C. K., Graves, L. E. & Goodwin, E. B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  19. Lee, M. H. & Schedl, T. Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev. 15, 2408–2420 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  20. Xu, L., Paulsen, J., Yoo, Y., Goodwin, E. B. & Strome, S. Caenorhabditis elegans MES-3 is a target of GLD-1 and functions epigenetically in germline development. Genetics 159, 1007–1017 (2001)
    CAS PubMed PubMed Central Google Scholar
  21. Kraemer, B. et al. NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1009–1018 (1999)
    Article CAS PubMed Google Scholar
  22. Ward, S., Roberts, T. M., Strome, S., Pavalko, F. M. & Hogan, E. Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J. Cell Biol. 102, 1778–1786 (1986)
    Article CAS PubMed Google Scholar
  23. Crittenden, S. L., Troemel, E. R., Evans, T. C. & Kimble, J. GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120, 2901–2911 (1994)
    CAS PubMed Google Scholar
  24. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997)
    Article CAS PubMed Google Scholar
  25. Wharton, R. P. & Struhl, G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967 (1991)
    Article CAS PubMed Google Scholar
  26. Tadauchi, T., Matsumoto, K., Herskowitz, I. & Irie, K. Post-transcriptional regulation through the HO 3′-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J. 20, 552–561 (2001)
    Article CAS PubMed PubMed Central Google Scholar

Download references