Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris (original) (raw)

References

  1. Margaritis, A. & Merchant, R.F.J. Thermostable cellulases from thermophilic microorganisms. Crit. Rev. Biotechnol. 4, 327–367 (1986).
    Article CAS Google Scholar
  2. Margaritis, A. & Merchant, R. Production and thermal stability characteristics of cellulase and xylanase enzymes from Thielavia terrestris. Biotechnol. Bioeng. Symp. 13, 426–428 (1983).
    Google Scholar
  3. Tansey, M.R. Agar-diffusion assay of cellulolytic ability of thermophilic fungi. Arch. Mikrobiol. 77, 1–11 (1971).
    Article CAS Google Scholar
  4. Wojtczak, G., Breuil, C., Yamada, J. & Saddler, J.N. A comparison of the thermostability of cellulases from various thermophilic fungi. Appl. Microbiol. Biotechnol. 17, 82–87 (1987).
    Google Scholar
  5. Jensen, E.B. & Boominathan, K.C. Thermophilic fungal expression system. US Patent 5,695,985 (1997).
  6. Jensen, E.B. & Karuppan, C.B. Thermophilic fungal expression system. US Patent 5,602,004 (1997).
  7. Chaetomium globosum Genome Database (Broad Institute, 2005). <http://www.broadinstitute.org/annotation/genome/chaetomium_globosum>.
  8. Henrissat, B. & Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997).
    Article CAS Google Scholar
  9. Karlsson, J. et al. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268, 6498–6507 (2001).
    Article CAS Google Scholar
  10. Harris, P.V. et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316 (2010).
    Article CAS Google Scholar
  11. Pahkala, K. et al. Production of bioethanol from barley straw and reed canary grass: a raw material study. 15th European Biomass Conference and Exhibition. Berlin, Germany, May 7–11, 2007 (ETA, Florence, Italy and WIP, Munich, 2007).
  12. Dien, B.S. et al. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30, 880–891 (2006).
    Article CAS Google Scholar
  13. Kaur, G., Kumar, S. & Satyanarayana, T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour. Technol. 94, 239–243 (2004).
    Article CAS Google Scholar
  14. Vafiadi, C., Topakas, E., Biely, P. & Christakopoulos, P. Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol. Lett. 296, 178–184 (2009).
    Article CAS Google Scholar
  15. Roy, S.K., Dey, S.K., Raha, S.K. & Chakrabarty, S.L. Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila D-14 (ATCC 48104). J. Gen. Microbiol. 136, 1967–1971 (1990).
    Article CAS Google Scholar
  16. van den Brink, J., Samson, R.A., Hagen, F., Boekhout, T. & de Vries, R.P. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. published online, doi:10.1007/s13225–13011–10107-z (28 May 2011).
  17. von Klopotek, A. Thielavia heterothallica spec. nov., die perfekte Form von Chrysosporium thermophilum. Arch. Microbiol. 107, 223–224 (1976).
    Article CAS Google Scholar
  18. Galtier, N. & Lobry, J.R. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J. Mol. Evol. 44, 632–636 (1997).
    Article CAS Google Scholar
  19. Zeldovich, K.B., Berezovsky, I.N. & Shakhnovich, E.I. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput. Biol. 3, e5 (2007).
    Article Google Scholar
  20. Glyakina, A.V., Garbuzynskiy, S.O., Lobanov, M.Y. & Galzitskaya, O.V. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 23, 2231–2238 (2007).
    Article CAS Google Scholar
  21. Wang, G.-Z. & Lercher, M.J. Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evol. Biol. 10, 263 (2010).
    Article Google Scholar
  22. Nishio, Y. et al. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 13, 1572–1579 (2003).
    Article CAS Google Scholar
  23. Mouchacca, J. Heat-tolerant fungi and applied research work: a synopsis of name changes and synomomies. World J. Microbiol. Biotechnol. 16, 881–888 (2000).
    Article Google Scholar
  24. Berka, R.M., Rey, M.W., Brown, K.M., Byun, T. & Klotz, A.V. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423–4427 (1998).
    CAS PubMed PubMed Central Google Scholar
  25. Murray, P. et al. Expression in and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr. Purif. 38, 248–257 (2004).
    Article CAS Google Scholar
  26. Voutilainen, S.P., Murray, P.G., Tuohy, M.G. & Koivula, A. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng. Des. Sel. 23, 69–79 (2010).
    Article CAS Google Scholar
  27. Visser, H. et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind. Biotechnol. 7, 214–223 (2011).
    Article CAS Google Scholar
  28. Jaffe, D.B. Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–96 (2003).
    Article CAS Google Scholar
  29. Detter, J.C. et al. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 80, 691–698 (2002).
    Article CAS Google Scholar
  30. Smit, A.F.A., Hubley, R. & Green, P. RepeatMasker Open–3.0. 1996–2010. <http://www.repeatmasker.org/> (2010).
  31. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
    Article CAS Google Scholar
  32. Salamov, A.A. Ab initio gene finding in Drosophila Genomic DNA. Genome Res. 10, 516–522 (2000).
    Article CAS Google Scholar
  33. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. & Borodovsky, M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18, 1979–1990 (2008).
    Article CAS Google Scholar
  34. Birney, E. Using GeneWise in the Drosophila annotation experiment. Genome Res. 10, 547–548 (2000).
    Article CAS Google Scholar
  35. Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
    Article CAS Google Scholar
  36. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    Article CAS Google Scholar
  37. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int. J. Neural Syst. 8, 581–599 (1997).
    Article CAS Google Scholar
  38. Melén, K., Krogh, A. & von Heijne, G. Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327, 735–744 (2003).
    Article Google Scholar
  39. Zdobnov, E.M. & Apweiler, R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).
    Article CAS Google Scholar
  40. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  41. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).
    Article CAS Google Scholar
  42. Koonin, E.V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7 (2004).
    Article Google Scholar
  43. Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).
  44. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).
    Article CAS Google Scholar
  45. Roy, B.P. & Archibald, F. Effects of kraft pulp and lignin on Trametes versicolor carbon metabolism. Appl. Environ. Microbiol. 59, 1855–1863 (1993).
    CAS PubMed PubMed Central Google Scholar
  46. Semova, N. et al. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiol. 6, 7 (2006).
    Article Google Scholar
  47. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    Article Google Scholar
  48. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
    Article CAS Google Scholar
  49. Hardcastle, T.J. & Kelly, K.A. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11, 422 (2010).
    Article Google Scholar
  50. Tsang, A., Butler, G., Powlowski, J., Panisko, E. & Baker, S. Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet. Biol. 46, S153–S160 (2009).
    Article CAS Google Scholar

Download references