Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors (original) (raw)
Hottiger, M.O., Hassa, P.O., Lüscher, B., Schüler, H. & Koch-Nolte, F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci.35, 208–219 (2010). ArticleCAS Google Scholar
Amé, J.C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays26, 882–893 (2004). Article Google Scholar
Sugimura, T., Fujimura, S., Hasegawa, S. & Kawamura, Y. Polymerization of the adenosine 5′-diphosphate ribose moiety of NAD by rat liver nuclear enzyme. Biochim. Biophys. Acta138, 438–441 (1967). ArticleCAS Google Scholar
Otto, H. et al. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics6, 139 (2005). Article Google Scholar
Kleine, H. et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell32, 57–69 (2008). ArticleCAS Google Scholar
Hassa, P.O. & Hottiger, M.O. The diverse biological roles of mammalian PARPs, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci.13, 3046–3082 (2008). ArticleCAS Google Scholar
Yélamos, J., Schreiber, V. & Dantzer, F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol. Med.14, 169–178 (2008). Article Google Scholar
Calabrese, C.R. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl. Cancer Inst.96, 56–67 (2004). ArticleCAS Google Scholar
Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434, 913–917 (2005). ArticleCAS Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCAS Google Scholar
Ashworth, A. Drug resistance caused by reversion mutation. Cancer Res.68, 10021–10023 (2008). ArticleCAS Google Scholar
Jagtap, P. & Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov.4, 421–440 (2005). ArticleCAS Google Scholar
Kauppinen, T.M. & Swanson, R.A. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience145, 1267–1272 (2007). ArticleCAS Google Scholar
Strosznajder, R.P., Czubowicz, K., Jesko, H. & Strosznajder, J.B. Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology. Mol. Neurobiol.41, 187–196 (2010). ArticleCAS Google Scholar
Ba, X. & Garg, N.J. Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am. J. Pathol.178, 946–955 (2011). ArticleCAS Google Scholar
Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science282, 1484–1487 (1998). ArticleCAS Google Scholar
McCabe, N. et al. Targeting Tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene28, 1465–1470 (2009). ArticleCAS Google Scholar
Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature461, 614–620 (2009). ArticleCAS Google Scholar
Purnell, M.R. & Whish, W.J. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J.185, 775–777 (1980). ArticleCAS Google Scholar
Papeo, G. et al. Poly(ADP-ribose) polymerase inhibition in cancer therapy: are we close to maturity? Expert Opin Ther Pat19, 1377–1400 (2009). ArticleCAS Google Scholar
Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009). ArticleCAS Google Scholar
Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet376, 235–244 (2010). ArticleCAS Google Scholar
Carden, C.P., Yap, T.A. & Kaye, S.B. PARP inhibition: targeting the Achilles′ heel of DNA repair to treat germline and sporadic ovarian cancers. Curr. Opin. Oncol.22, 473–480 (2010). ArticleCAS Google Scholar
Frye, S.V. The art of the chemical probe. Nat. Chem. Biol.6, 159–161 (2010). ArticleCAS Google Scholar
Ruf, A., Mennissier de Murcia, J., de Murcia, G. & Schulz, G.E. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. USA93, 7481–7485 (1996). ArticleCAS Google Scholar
Bell, C.E. & Eisenberg, D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry35, 1137–1149 (1996). ArticleCAS Google Scholar
Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. USA103, 15835–15840 (2006). ArticleCAS Google Scholar
Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc.2, 2212–2221 (2007). ArticleCAS Google Scholar
Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA104, 20523–20528 (2007). ArticleCAS Google Scholar
Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res.16, 4527–4531 (2010). ArticleCAS Google Scholar
Pellicciari, R. et al. Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors. Farmaco58, 851–858 (2003). ArticleCAS Google Scholar
Chiarugi, A. et al. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J. Pharmacol. Exp. Ther.305, 943–949 (2003). ArticleCAS Google Scholar
Hans, C.P. et al. Thieno[2,3-c]isoquinolin-5-one, a potent poly(ADP-ribose) polymerase inhibitor, promotes atherosclerotic plaque regression in high-fat diet-fed apolipoprotein E-deficient mice: effects on inflammatory markers and lipid content. J. Pharmacol. Exp. Ther.329, 150–158 (2009). ArticleCAS Google Scholar
Lehtiö, L. et al. Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3. J. Med. Chem.52, 3108–3111 (2009). Article Google Scholar
Karlberg, T. et al. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J. Med. Chem.53, 5352–5355 (2010). ArticleCAS Google Scholar
Karlberg, T., Hammarström, M., Schütz, P., Svensson, L. & Schüler, H. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Biochemistry49, 1056–1058 (2010). ArticleCAS Google Scholar
Lehtiö, L. et al. Zinc binding catalytic domain of human tankyrase 1. J. Mol. Biol.379, 136–145 (2008). Article Google Scholar
Iwashita, A. et al. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett.579, 1389–1393 (2005). ArticleCAS Google Scholar
Yu, M. et al. PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene24, 1982–1993 (2005). ArticleCAS Google Scholar
Chou, H.Y., Chou, H.T. & Lee, S.C. CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10). J. Biol. Chem.281, 15201–15207 (2006). ArticleCAS Google Scholar
Citarelli, M., Teotia, S. & Lamb, R.S. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol. Biol.10, 308 (2010). Article Google Scholar