MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island (original) (raw)
Underwood, A.P. et al. Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. J. Clin. Microbiol.51, 232–237 (2013). Article Google Scholar
Wain, J. & Mavrogiorgou, E. Next-generation sequencing in clinical microbiology. Expert Rev. Mol. Diagn.13, 225–227 (2013). ArticleCAS Google Scholar
Thomson, N. et al. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol.339, 279–300 (2004). ArticleCAS Google Scholar
Livermore, D.M. & Wain, J. Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. Infect Chemother.45, 1–10 (2013). ArticleCAS Google Scholar
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4, 265–270 (2009). ArticleCAS Google Scholar
Buckle, G.C., Walker, C.L. & Black, R.E. Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health2, 010401 (2012). Article Google Scholar
Wain, J., Hendriksen, R., Mikoleit, M., Keddy, K. & Ochiai, R. Typhoid fever. Lancet 10.1016/S0140-6736(13)62708-7 (21 October 2014).
Roumagnac, P. et al. Evolutionary history of Salmonella typhi. Science314, 1301–1304 (2006). ArticleCAS Google Scholar
Kariuki, S. et al. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J. Clin. Microbiol.48, 2171–2176 (2010). ArticleCAS Google Scholar
Holt, K.E. et al. Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam. PLoS Negl. Trop. Dis.5, e929 (2011). Article Google Scholar
Holt, K.E. et al. High-resolution genotyping of the endemic Salmonella Typhi population during a Vi (typhoid) vaccination trial in Kolkata. PLoS Negl. Trop. Dis.6, e1490 (2012). Article Google Scholar
Holt, K.E. et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet.40, 987–993 (2008). ArticleCAS Google Scholar
Holt, K.E. et al. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl. Trop. Dis.5, e1245 (2011). Article Google Scholar
Le, T.A. et al. Clonal expansion and microevolution of quinolone-resistant Salmonella enterica serotype typhi in Vietnam from 1996 to 2004. J. Clin. Microbiol.45, 3485–3492 (2007). ArticleCAS Google Scholar
Phan, M.D. et al. Variation in Salmonella enterica serovar typhi IncHI1 plasmids during the global spread of resistant typhoid fever. Antimicrob. Agents Chemother.53, 716–727 (2009). ArticleCAS Google Scholar
Frith, M.C., Hamada, M. & Horton, P. Parameters for accurate genome alignment. BMC Bioinformatics11, 80 (2010). Article Google Scholar
Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol.11, R119 (2010). ArticleCAS Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol.19, 455–477 (2012). ArticleCAS Google Scholar
Szczepanowski, R. et al. The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology151, 1095–1111 (2005). ArticleCAS Google Scholar
Watson, M. et al. poRe: an R package for the visualization and analysis of nanopore sequencing data. Bioinformaticsdoi:10.1093/bioinformatics/btu590 (29 August 2014).
Loman, N.J. & Quinlan, A.R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics30, 3399–3401 (2014). ArticleCAS Google Scholar
Quick, J., Quinlan, A.R. & Loman, N.J. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. GigaScience3, 22 (2014). Article Google Scholar
Mikheyev, A.S. & Tin, M.M.Y. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Res.14, 1097–1102 (2014). ArticleCAS Google Scholar
Chin, C.S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569 (2013). ArticleCAS Google Scholar
Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature413, 848–852 (2001). ArticleCAS Google Scholar
Holt, K.E. et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics10, 36 (2009). Article Google Scholar
Grimont, A. & Weill, F. Antigenic Formulae of the Salmonella Serovars 9th edn. (World Health Organization, Geneva, 2007).
Callow, B. A new phage-typing scheme for Salmonella typhi-murium . J. Hyg. (Lond.)57, 346–359 (1959). ArticleCAS Google Scholar
Cock, P.J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics25, 1422–1423 (2009). ArticleCAS Google Scholar
Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res.8, 175–185 (1998). ArticleCAS Google Scholar