Regev, A. et al. The Human Cell Atlas. eLife6, e27041 (2017). Google Scholar
Tabula Muris Consortium, Quake, S.R., Wys-Coray, T. & Darmanis, S. Transcriptomic characterization of 20 organs and tissues from mouse at single cell resolution creates a Tabula Muris. Preprint at https://www.biorxiv.org/content/early/2017/12/20/237446 (2017).
Han, X. et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell172, 1091–1107.e17 (2018). Google Scholar
Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet.16, 57–66 (2015). Google Scholar
Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. & Teichmann, S.A. The technology and biology of single-cell RNA sequencing. Mol. Cell58, 610–620 (2015). Google Scholar
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.33, 495–502 (2015). Google Scholar
Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol.33, 503–509 (2015). Google Scholar
Karaiskos, N. et al. The Drosophila embryo at single-cell transcriptome resolution. Science358, 194–199 (2017). Google Scholar
Halpern, K.B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature542, 352–356 (2017). Google Scholar
Ståhl, P.L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016). Google Scholar
Lein, E., Borm, L.E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science358, 64–69 (2017). Google Scholar
Lee, J.H. De Novo Gene Expression Reconstruction in Space. Trends Mol. Med.23, 583–593 (2017). Google Scholar
Moor, A.E. & Itzkovitz, S. Spatial transcriptomics: paving the way for tissue-level systems biology. Curr. Opin. Biotechnol.46, 126–133 (2017). Google Scholar
Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr.16, 179–203 (1996). Google Scholar
Gebhardt, R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther.53, 275–354 (1992). Google Scholar
Wang, B., Zhao, L., Fish, M., Logan, C.Y. & Nusse, R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature524, 180–185 (2015). Google Scholar
Planas-Paz, L. et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol.18, 467–479 (2016). Google Scholar
Rocha, A.S. et al. The angiocrine factor rspondin3 is a key determinant of liver zonation. Cell Reports13, 1757–1764 (2015). Google Scholar
Braeuning, A. et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J.273, 5051–5061 (2006). Google Scholar
Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol.20, 8491–8504 (2014). Google Scholar
Colnot, S. & Perret, C. Liver Zonation. in Molecular Pathology of Liver Diseases (ed. Monga, S.P.S.) 7–16 (Springer US, 2011).
Aird, W.C. Phenotypic heterogeneity of the endothelium. II. Representative vascular beds. Circ. Res.100, 174–190 (2007). Google Scholar
Strauss, O., Phillips, A., Ruggiero, K., Bartlett, A. & Dunbar, P.R. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Rep.7, 44356 (2017). Google Scholar
Rafii, S., Butler, J.M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature529, 316–325 (2016). Google Scholar
Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science343, 776–779 (2014). Google Scholar
Chistiakov, D.A., Orekhov, A.N., Sobenin, I.A. & Bobryshev, Y.V. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front. Physiol.5, 279 (2014). Google Scholar
Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity47, 374–388.e6 (2017). Google Scholar
Graeber, T.G. & Eisenberg, D. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nat. Genet.29, 295–300 (2001). Google Scholar
Zhou, J.X., Taramelli, R., Pedrini, E., Knijnenburg, T. & Huang, S. Extracting intercellular signaling network of cancer tissues using ligand-receptor expression patterns from whole-tumor and single-cell transcriptomes. Sci Rep.7, 8815 (2017). Google Scholar
Shutter, J.R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev.14, 1313–1318 (2000). Google Scholar
Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). Google Scholar
Adams, R.H. & Klein, R. Eph receptors and ephrin ligands. essential mediators of vascular development. Trends Cardiovasc. Med.10, 183–188 (2000). Google Scholar
Rahner, C., Mitic, L.L. & Anderson, J.M. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology120, 411–422 (2001). Google Scholar
FANTOM Consortium and the RIKEN PMI and CLST (DGT) & Forrest, A.R. et al. A promoter-level mammalian expression atlas. Nature507, 462–470 (2014).
Moore, K.A. & Lemischka, I.R. Stem cells and their niches. Science311, 1880–1885 (2006). Google Scholar
Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology129, 626–638 (2005). Google Scholar
Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science314, 1447–1450 (2006). Google Scholar
Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell161, 1202–1214 (2015). Google Scholar
Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell161, 1187–1201 (2015). Google Scholar
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature554, 475–480 (2018). Google Scholar
Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol.87, 1315–1530 (2013). Google Scholar
Hernandez-Gea, V. & Friedman, S.L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol.6, 425–456 (2011). Google Scholar
Olivares-Villagómez, D. & Van Kaer, L. Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier. Trends Immunol.39, 264–275 (2018). Google Scholar
Boisset, J.-C. et al. Mapping the physical network of cellular interactions. Nat. Methods15, 547–553 (2018). Google Scholar
Shah, S., Lubeck, E., Zhou, W. & Cai, L. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron94, 752–758.e1 (2017). Google Scholar
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett.407, 313–319 (1997). Google Scholar
Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis40, 241–246 (2004). Google Scholar
Bahar Halpern, K. et al. Bursty gene expression in the intact mammalian liver. Mol. Cell58, 147–156 (2015). Google Scholar
Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc.8, 1743–1758 (2013). Google Scholar
Seglen, P.O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp. Cell Res.82, 391–398 (1973). Google Scholar
George, T.C. et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J. Immunol. Methods311, 117–129 (2006). Google Scholar
Butler, A. & Satija, R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. Nat. Biotechnol.36, 411–420 (2017). Google Scholar
Shay, T. & Kang, J. Immunological Genome Project and systems immunology. Trends Immunol.34, 602–609 (2013). Google Scholar
Hughes, M.E., Hogenesch, J.B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms25, 372–380 (2010). Google Scholar