The application of mass spectrometry to membrane proteomics (original) (raw)
References
Wallin, E. & Von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci.7, 1029–1038 (1998). ArticleCAS Google Scholar
Stevens, T.J. & Arkin, I.T. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins39, 417–420 (2000). ArticleCAS Google Scholar
Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Disc.1, 727–730 (2003). Article Google Scholar
Auerbach, D., Thaminy, S., Hottiger, M.O. & Stagljar, I. The post-genomic era of interactive proteomics: facts and perspectives. Proteomics2, 611–623 (2002). ArticleCAS Google Scholar
Turk, B.E. & Cantley, L.C. Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr. Opin. Chem. Biol.7, 84–90 (2003). ArticleCAS Google Scholar
Bader G.D. & Hogue C.W. Analyzing yeast protein–protein interaction data obtained from different sources. Nat. Biotechnol.20, 991–997 (2002). ArticleCAS Google Scholar
Santoni, V., Kieffer, S., Desclaux, D., Masson, F. & Rabilloud, T. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis21, 3329–3344 (2000). ArticleCAS Google Scholar
Santoni, V., Malloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis21, 1054–1070 (2000). ArticleCAS Google Scholar
Ferro, M. et al. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc. Natl. Acad. Sci. USA99, 11487–11492 (2002). ArticleCAS Google Scholar
Ferro, M. et al. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis21, 3517–3526 (2002). Article Google Scholar
Carboni, L., Piubelli, C., Righetti, P.G., Jansson, B. & Domenici, E. Proteomic analysis of rat brain tissue: comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis23, 4132–4141 (2002). ArticleCAS Google Scholar
Henningsen, R., Gale, B.L., Straub, K.M. & DeNagel, D.C. Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics2, 1479–1488 (2002). ArticleCAS Google Scholar
Galeva, N. & Altermann, M. Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics2, 713–722 (2002). ArticleCAS Google Scholar
Simpson, R.J. et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis21, 1707–1732 (2000). ArticleCAS Google Scholar
Brookes, P.S. et al. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics2, 969–977 (2002). ArticleCAS Google Scholar
Devreese, B., Vanrobaeys, F., Smet, J., Van Beeumen, J. & Van Coster, R. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis23, 2525–2533 (2002). ArticleCAS Google Scholar
Yan, J.X., Harry, R.A., Spibey, C. & Dunn, M.J. Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis21, 3657–3665 (2000). ArticleCAS Google Scholar
Sinha, P., Poland, J., Schnolzer, M. & Rabilloud, T. A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics1, 835–840 (2001). ArticleCAS Google Scholar
van Montfort, B.A., Canas, B., Duurkens, R., Godovac-Zimmermann, J. & Robillard, G.T. Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom.37, 322–330 (2002). ArticleCAS Google Scholar
van Montfort, B.A. et al. Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochem. Biophys. Acta1555, 111–115 (2002). CASPubMed Google Scholar
Han, D.K., Eng, J., Zhou, H., & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol.19, 946–951 (2002). Article Google Scholar
Blonder, J., Goshe, M.B., Moore, R.J., Pasa-Tolic, L., Masselon, C.D., Lipton, M.S. & Smith, R.D. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Prot. Res.1, 351–360 (2002). ArticleCAS Google Scholar
Goshe, M.B., Blonder, J. & Smith, R.D. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J. Prot. Res., in press (2003).
Washburn, M.P., Wolters,D. & Yates III, J.R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19, 242–247 (2001). ArticleCAS Google Scholar
Zhou, H., Ranish, J.A., Watts, J.D., & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol.20, 512–515 (2002). ArticleCAS Google Scholar
Wu, C.C., MacCoss, M.J., Howell, K.E. & Yates III, J.R. A method for the comprehensive proteomic analysis of membrane proteins: identification, modifications, and topology. Nat. Biotechnol., in press (2003).
Howell,K.E. & Palade,G.E. Hepatic Golgi fractions resolved into membrane and content subfractions. J. Cell Biol.92, 822–832 (1982). ArticleCAS Google Scholar
Gudepu, R.G. & Wold, F. Posttranslational modifications. in Proteins: Analysis and Design. Angeletti, R.H. (ed.). 121–207 (Academic Press, San Diego, CA; 1998). Chapter Google Scholar
le Coutre, J. et al. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry39, 4237–4242 (2000). ArticleCAS Google Scholar
Whitelegge, J.P., Zhang, H., Aguilera, R., Taylor, R.M. & Cramer, W.A. Full subunit converage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein. Mol. Cell. Proteomics1, 816–827 (2002). ArticleCAS Google Scholar
Gómez, S.M., Nishio, J.N., Faull, K.F. & Whitelegge, J.P. The chloroplast grana defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell. Proteomics1, 46–59 (2002). Article Google Scholar
Cadene, M. & Chait, B.T. A robust, detergent-friendly method for mass spectrophometric analysis of integral membrane proteins. Anal. Chem.72, 5655–5658 (2000). ArticleCAS Google Scholar
Meng, F., Cargile, B.J., Patri, S.M., Johnson, J.R., McLoughlin, S.M. & Kelleher, N.L. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem.74, 2923–2929 (2002). ArticleCAS Google Scholar
Oda, Y., Nagasu, T. & Chait, B.D. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.19, 379–382 (2001). ArticleCAS Google Scholar
Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.19, 375–378 (2001). ArticleCAS Google Scholar
Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem.73, 2578–2586 (2001). ArticleCAS Google Scholar
Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccaromyces cerevisiae. Nat. Biotechnol.20, 301–305 (2002). ArticleCAS Google Scholar
MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA99, 7900–7905 (2002). ArticleCAS Google Scholar
Mindell, J.A., Maduke, M., Miller, C. & Grigorieff, N. Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature409, 219–223 (2002). Article Google Scholar