Containment of herbicide resistance through genetic engineering of the chloroplast genome (original) (raw)

References

  1. Shah, D.M., Horoh, R.B.,, Klee, H.J., Kishore, G.M., Winter, J.A., E.Tumer, N. et al. 1986. Engineering herbicides tolerance in transgenic plants. Science 233: 478–481.
    Article CAS Google Scholar
  2. Cioppa, G.D., Baner, S.C.,, Tayler, M.L., Roshester, D.E., Klein, B.K., Shah, D.M. et al. 1987. Targeting a herbicide resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584.
    Google Scholar
  3. Llewellyn, D. and Fitt, G. 1996. Pollen dispersal from two field trials of trans-genic cotton in the Namoi valley, Australia. Molecular Breeding 2: 157–166.
    Article Google Scholar
  4. Umbeck, P.F., Barton, K.A.,, Nordheim, E.V., McCarty, J.C., Parrot, W.L., and Jenkins, J.N. 1991. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J. Econ. Entomol. 84: 1943–1950.
    Article Google Scholar
  5. King, J. 1996. Could transgenic supercrops one day breed superweeds? Science 274: 180–181.
    Article Google Scholar
  6. Mikkelsen, T.R., Anderson, B., and, Jörgensen, R.B. 1996. The risk of crop transgene spread. Nature 380: 31.
    Article CAS Google Scholar
  7. Daniell, H. and Rebeiz, C.A. 1982. Chloroplast culture IX: chlorphyll(ide) A biosynthesis in vitro at rates higher than in vivo. Biochem. Biophys. Res. ComMun. 106: 466–471.
    Article CAS Google Scholar
  8. Daniell, H., Ramanujan, P.,, Krishnan, M., Gnanam, A., and Rebeiz, C.A. 1983. In vitro synthesis of photosynthetic membranes: I. Development of photosystem I activity and cyclic phosphorylation. Biochem. Biophys. Res. ComMun. 111: 740–749.
    Article CAS Google Scholar
  9. Daniell, H., Krishnan, M.,, Umabai, U., and Gnanam, A. 1986. An efficient and prolonged in vitro translational system from cucumber etioplasts. Biochem. Biophys. Res. ComMun. 135: 248–255.
    Article CAS Google Scholar
  10. Daniell, H. and McFadden, B.A. 1987. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc. Natl. Acad. Sci. USA 84: 6349–6353.
    Article CAS Google Scholar
  11. Carlson, P.S. 1973. The use of protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70: 598–602.
    Article CAS Google Scholar
  12. Daniell, H. 1993. Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol. 217: 536–556.
    Article CAS Google Scholar
  13. Daniell, H., Vivekananda, J.,, Nielsen, B.L., Ye, G.N., Tewari, K.K., and Sanford, J.C. 1990. Transient foreign gene expression in chloroplast of cultured tobacco cells following biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA 87: 88–92.
    Article CAS Google Scholar
  14. Ye, G.N., Daniell, H., and, Sanford, J.C. 1990. Optimization of delivery of foreign DNA into higher plant chloroplasts. Plant Mol. Biol. 15: 809–819.
    Article CAS Google Scholar
  15. Daniell, H., Krishnan, M., and, McFadden, B.A. 1991. Expression of β-glucuronidase gene in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Reports 9: 615–619.
    Article CAS Google Scholar
  16. Svab, Z. and Maliga, P. 1993. High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.
    Article CAS Google Scholar
  17. McBride, K.E., Svab, Z.,, Schaaf, D.J., Hogen, P.S., Stalker, D.M., and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13: 362–365.
    CAS Google Scholar
  18. Maier, R.M., Neckermann, K.,, Igloi, G.L., and Kössel, H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251: 614–628.
    Article CAS Google Scholar
  19. Brixey, P.J., Guda, C. and Daniell, H. 1997. The chloroplast psbA promoter is more efficient in E. coli than the T7 promoter for hyper expression of a foreign protein. Biotechnology Letters 19: 395–399.
    Article CAS Google Scholar
  20. Svab, Z., Hajdukiewicz, P. and Maliga, P. 1990. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526–8530.
    Article CAS Google Scholar
  21. Della-Cioppa, G., Bauer, S.C., Klein, B.K., Shaw, D.M., Fraley, R.T., and Kishore, G.M. 1986. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83: 6873–6877.
    Article CAS Google Scholar
  22. Rogers, S.G., Brand, L.A., Holder, S.B., Sharps, E.S., and Brackin, M.J. 1983. Amplification of the aro A gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46: 37–43.
    CAS PubMed PubMed Central Google Scholar
  23. Daniell, H. 1997. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol. Biol. 62: 463–489.
    CAS PubMed Google Scholar
  24. Edwards, K., Johnstone, C., and Thompson, C. 1991. A simple and rapid method for preparation of plant genomic DNA for PCR analysis. Nucl. Acids. Res. 19: 1349.
    Article CAS Google Scholar

Download references