von Harsdorf, R., Poole-Wilson, P.A. & Dietz, R. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet363, 1306–1313 (2004). ArticlePubMed Google Scholar
Field, L.J. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann. NY Acad. Sci.1015, 160–170 (2004). ArticleCASPubMed Google Scholar
Marelli, D., Desrosiers, C., el-Alfy, M., Kao, R.L. & Chiu, R.C. Cell transplantation for myocardial repair: an experimental approach. Cell Transplant.1, 383–390 (1992). ArticleCASPubMed Google Scholar
Chiu, R.C., Zibaitis, A. & Kao, R.L. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg.60, 12–18 (1995). ArticleCASPubMed Google Scholar
Koh, G.Y., Klug, M.G., Soonpaa, M.H. & Field, L.J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J. Clin. Invest.92, 1548–1554 (1993). ArticleCASPubMedPubMed Central Google Scholar
Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4, 929–933 (1998). ArticleCASPubMed Google Scholar
Reinecke, H., Poppa, V. & Murry, C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol.34, 241–249 (2002). ArticleCASPubMed Google Scholar
Reinecke, H., Minami, E., Poppa, V. & Murry, C.E. Evidence for fusion between cardiac and skeletal muscle cells. Circ. Res.94, e56–60 (2004). ArticleCASPubMed Google Scholar
Reinecke, H., MacDonald, G.H., Hauschka, S.D. & Murry, C.E. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol.149, 731–740 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rubart, M., Soonpaa, M.H., Nakajima, H. & Field, L.J. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest.114, 775–783 (2004). ArticleCASPubMedPubMed Central Google Scholar
Leobon, B. et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. USA100, 7808–7811 (2003). ArticleCASPubMedPubMed Central Google Scholar
Menasche, P. Skeletal myoblast transplantation for cardiac repair. Expert Rev. Cardiovasc. Ther.2, 21–28 (2004). ArticlePubMed Google Scholar
Jain, M. et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation103, 1920–1927 (2001). ArticleCASPubMed Google Scholar
Menasche, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41, 1078–1083 (2003). ArticlePubMed Google Scholar
Murry, C.E., Field, L.J. & Menasche, P. Cell-based cardiac repair: Reflections at the 10-year point. Circulation (in press).
Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J.25, 749–758 (2004). ArticlePubMedCAS Google Scholar
Deb, A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation107, 1247–1249 (2003). ArticlePubMed Google Scholar
Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med.346, 5–15 (2002). ArticlePubMed Google Scholar
Glaser, R., Lu, M.M., Narula, N. & Epstein, J.A. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation106, 17–19 (2002). ArticlePubMed Google Scholar
Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA100, 4754–4759 (2003). ArticleCASPubMedPubMed Central Google Scholar
Laflamme, M.A., Myerson, D., Saffitz, J.E. & Murry, C.E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res.90, 634–640 (2002). ArticleCASPubMed Google Scholar
Muller, P. et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation106, 31–35 (2002). ArticlePubMed Google Scholar
Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science279, 1528–1530 (1998); erratum: 281, 973 (1998). ArticleCASPubMed Google Scholar
Bittner, R.E. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl)199, 391–396 (1999). ArticleCAS Google Scholar
Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107, 1395–1402 (2001). ArticleCASPubMedPubMed Central Google Scholar
Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425, 968–973 (2003). ArticleCASPubMed Google Scholar
Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature410, 701–705 (2001). ArticleCASPubMed Google Scholar
Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428, 664–668 (2004). ArticleCASPubMed Google Scholar
Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428, 668–673 (2004). ArticleCASPubMed Google Scholar
Nygren, J.M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10, 494–501 (2004). ArticleCASPubMed Google Scholar
Lapidos, K.A. et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J. Clin. Invest.114, 1577–1585 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kajstura, J. et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res.96, 127–137 (2005). ArticleCASPubMed Google Scholar
Yoon, Y.S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest.115, 326–338 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dimmeler, S., Zeiher, A.M. & Schneider, M.D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest.115, 572–583 (2005). ArticleCASPubMedPubMed Central Google Scholar
Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation106, 3009–3017 (2002). ArticlePubMed Google Scholar
Wollert, K.C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004). ArticlePubMed Google Scholar
Chen, S.L. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol.94, 92–95 (2004). ArticlePubMed Google Scholar
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997). ArticleCASPubMed Google Scholar
Aicher, A., Zeiher, A.M. & Dimmeler, S. Mobilizing endothelial progenitor cells. Hypertension45, 321–325 (2005). ArticleCASPubMed Google Scholar
Askari, A.T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362, 697–703 (2003). ArticleCASPubMed Google Scholar
Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10, 858–864 (2004). ArticleCASPubMed Google Scholar
Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res.87, 728–730 (2000). ArticleCASPubMed Google Scholar
Heeschen, C. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation109, 1615–1622 (2004). ArticlePubMed Google Scholar
Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation110, 3136–3142 (2004). ArticleCASPubMed Google Scholar
Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7, 430–436 (2001). ArticleCASPubMed Google Scholar
Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation107, 1164–1169 (2003). ArticlePubMed Google Scholar
Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA97, 3422–3427 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94, 678–685 (2004). ArticleCASPubMed Google Scholar
Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94, 230–238 (2004). ArticleCASPubMed Google Scholar
Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA98, 10344–10349 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sugano, Y. et al. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc. Res.65, 446–456 (2005). ArticleCASPubMed Google Scholar
Iwanaga, K. et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem. Biophys. Res. Commun.325, 1353–1359 (2004). ArticleCASPubMed Google Scholar
Deten, A. et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc. Res.65, 52–63 (2005). ArticleCASPubMed Google Scholar
Norol, F. et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood102, 4361–4368 (2003). ArticleCASPubMed Google Scholar
Orlic, D. et al. Cytokine mobilized CD34+ cells do not benefit rhesus monkeys following induced myocardial infarction. Blood100, 29A (2002). Article Google Scholar
Minatoguchi, S. et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation109, 2572–2580 (2004). ArticleCASPubMed Google Scholar
Harada, M. et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med.11, 305–311 (2005). ArticleCASPubMed Google Scholar
Kang, H.J. et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet363, 751–756 (2004). ArticleCASPubMed Google Scholar
Kuethe, F. et al. Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction. Dtsch. Med. Wochenschr.129, 424–428 (2004). CASPubMed Google Scholar
Tocci, A. & Forte, L. Mesenchymal stem cell: use and perspectives. Hematol. J.4, 92–96 (2003). ArticlePubMed Google Scholar
Caplan, A.I. & Bruder, S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med.7, 259–264 (2001). ArticleCASPubMed Google Scholar
Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999). ArticleCASPubMed Google Scholar
Pittenger, M.F. & Martin, B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res.95, 9–20 (2004). ArticleCASPubMed Google Scholar
Bittira, B., Kuang, J.Q., Al-Khaldi, A., Shum-Tim, D. & Chiu, R.C. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann. Thorac. Surg.74, 1154–1159 (2002). ArticlePubMed Google Scholar
Ma, J. et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res. Cardiol.100, 217–223 (2005). ArticleCASPubMed Google Scholar
Shake, J.G. et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg.73, 1919–1925 (2002). ArticlePubMed Google Scholar
Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105, 93–98 (2002). ArticlePubMed Google Scholar
Le Blanc, K. & Ringden, O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant.11, 321–334 (2005). ArticleCASPubMed Google Scholar
Zhao, R.C., Liao, L. & Han, Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J. Lab. Clin. Med.143, 284–291 (2004). ArticlePubMed Google Scholar
El-Badri, N.S., Maheshwari, A. & Sanberg, P.R. Mesenchymal stem cells in autoimmune disease. Stem Cells Dev.13, 463–472 (2004). ArticlePubMed Google Scholar
Bittira, B., Shum-Tim, D., Al-Khaldi, A. & Chiu, R.C. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg.24, 393–398 (2003). ArticlePubMed Google Scholar
Beltrami, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114, 763–776 (2003). ArticleCASPubMed Google Scholar
Dawn, B. et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA102, 3766–3771 (2005). ArticleCASPubMedPubMed Central Google Scholar
Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA100, 12313–12318 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin, C.M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265, 262–275 (2004). ArticleCASPubMed Google Scholar
Cai, C.L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell5, 877–889 (2003). ArticleCASPubMedPubMed Central Google Scholar
Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227, 271–278 (2000). ArticleCASPubMed Google Scholar
Rust, E.M., Westfall, M.V., Samuelson, L.C. & Metzger, J.M. Gene transfer into mouse embryonic stem cell-derived cardiac myocytes mediated by recombinant adenovirus. In Vitro Cell Dev. Biol. Anim.33, 270–276 (1997). ArticleCASPubMed Google Scholar
Westfall, M.V., Pasyk, K.A., Yule, D.I., Samuelson, L.C. & Metzger, J.M. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil. Cytoskeleton36, 43–54 (1997). ArticleCASPubMed Google Scholar
Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91, 501–508 (2002). ArticleCASPubMed Google Scholar
Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107, 2733–2740 (2003). ArticleCASPubMed Google Scholar
Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCASPubMed Google Scholar
Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol.87, 27–45 (1985). CASPubMed Google Scholar
Fijnvandraat, A.C. et al. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc. Res.58, 399–409 (2003). ArticleCASPubMed Google Scholar
Robbins, J., Gulick, J., Sanchez, A., Howles, P. & Doetschman, T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem.265, 11905–11909 (1990). CASPubMed Google Scholar
Maltsev, V.A., Rohwedel, J., Hescheler, J. & Wobus, A.M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev.44, 41–50 (1993). ArticleCASPubMed Google Scholar
Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M. & Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res.75, 233–244 (1994). ArticleCASPubMed Google Scholar
Zhang, Y.M., Hartzell, C., Narlow, M. & Dudley, S.C. Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation106, 1294–1299 (2002). ArticlePubMed Google Scholar
Sugi, Y. & Lough, J. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev. Dyn.200, 155–162 (1994). ArticleCASPubMed Google Scholar
Schultheiss, T.M., Xydas, S. & Lassar, A.B. Induction of avian cardiac myogenesis by anterior endoderm. Development121, 4203–4214 (1995). CASPubMed Google Scholar
Rudy-Reil, D. & Lough, J. Avian precardiac endoderm/mesoderm induces cardiac myocyte differentiation in murine embryonic stem cells. Circ. Res.94, e107–116 (2004). ArticlePubMedCAS Google Scholar
Behfar, A. et al. Stem cell differentiation requires a paracrine pathway in the heart. Faseb J.16, 1558–1566 (2002). ArticlePubMed Google Scholar
Kawai, T. et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J.68, 691–702 (2004). ArticleCASPubMed Google Scholar
Yuasa, S. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol.23, 607–611 (2005). ArticleCASPubMed Google Scholar
Dell'Era, P. et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res.93, 414–420 (2003). ArticleCASPubMed Google Scholar
Kanno, S. et al. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA101, 12277–12281 (2004). ArticleCASPubMedPubMed Central Google Scholar
Terami, H., Hidaka, K., Katsumata, T., Iio, A. & Morisaki, T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem. Biophys. Res. Commun.325, 968–975 (2004). ArticleCASPubMed Google Scholar
Wobus, A.M. et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol.29, 1525–1539 (1997). ArticleCASPubMed Google Scholar
Zandstra, P.W. et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng.9, 767–778 (2003). ArticleCASPubMed Google Scholar
Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation107, 1912–1916 (2003). ArticleCASPubMed Google Scholar
Ventura, C., Zinellu, E., Maninchedda, E. & Maioli, M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res.92, 623–629 (2003). ArticleCASPubMed Google Scholar
Klug, M.G., Soonpaa, M.H., Koh, G.Y. & Field, L.J. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98, 216–224 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hidaka, K. et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. Faseb J.17, 740–742 (2003). ArticleCASPubMed Google Scholar
Kolossov, E. et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. Faseb J.19, 577–579 (2005). ArticleCASPubMed Google Scholar
Meyer, N., Jaconi, M., Landopoulou, A., Fort, P. & Puceat, M. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett.478, 151–158 (2000). ArticleCASPubMed Google Scholar
Etzion, S. et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell Cardiol.33, 1321–1330 (2001). ArticleCASPubMed Google Scholar
Min, J.Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92, 288–296 (2002). ArticlePubMed Google Scholar
Min, J.Y. et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg.125, 361–369 (2003). ArticlePubMed Google Scholar
Hodgson, D.M. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.287, H471–479 (2004). ArticleCASPubMed Google Scholar
Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108, 407–414 (2001). ArticleCASPubMedPubMed Central Google Scholar
He, J.Q., Ma, Y., Lee, Y., Thomson, J.A. & Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res.93, 32–39 (2003). ArticleCASPubMed Google Scholar
Ma, Y., He, J., Lee, Y., Kamp, J. & Thomson, J. Functional cardiomyocytes from four human embryonic cell lines. Meeting proceedings of the Keystone Symposium, Keystone, CO. From Stem Cells to Therapy, Abstract # 3038 (abstract) (2003). Google Scholar
Klug, M.G., Soonpaa, M.H. & Field, L.J. DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am. J. Physiol.269, H1913–1921 (1995). CASPubMed Google Scholar
Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol.285, H2355–2363 (2003). ArticleCASPubMed Google Scholar
Laflamme, M.A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. (in press).
Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22, 1282–1289 (2004). ArticleCASPubMed Google Scholar
Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111, 11–20 (2005). ArticlePubMed Google Scholar
Odorico, J.S., Kaufman, D.S. & Thomson, J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells19, 193–204 (2001). ArticleCASPubMed Google Scholar
Zammaretti, P. & Jaconi, M. Cardiac tissue engineering: regeneration of the wounded heart. Curr. Opin. Biotechnol.15, 430–434 (2004). ArticleCASPubMed Google Scholar
Zimmermann, W.H., Melnychenko, I. & Eschenhagen, T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials25, 1639–1647 (2004). ArticleCASPubMed Google Scholar
Papadaki, M. et al. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol.280, H168–178 (2001). ArticleCASPubMed Google Scholar
Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA101, 18129–18134 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zimmermann, W.H. et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation106, I151–157 (2002). PubMed Google Scholar
Shimizu, T. et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res.90, e40 (2002). ArticleCASPubMed Google Scholar
Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol.286, H507–516 (2004). ArticleCASPubMed Google Scholar
Muller-Ehmsen, J. et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell Cardiol.34, 107–116 (2002). ArticlePubMedCAS Google Scholar
Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol.33, 907–921 (2001). ArticleCASPubMed Google Scholar
Mangi, A.A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9, 1195–1201 (2003). ArticleCASPubMed Google Scholar
Neff, T. et al. Pharmacologically regulated in vivo selection in a large animal. Blood100, 2026–2031 (2002). ArticleCASPubMed Google Scholar
Reinecke, H., Zhang, M., Bartosek, T. & Murry, C.E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation100, 193–202 (1999). ArticleCASPubMed Google Scholar
Couzin, J. & Kaiser, J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science307, 1028 (2005). ArticleCASPubMed Google Scholar