A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors (original) (raw)
References
Berman, B.P. et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. USA99, 757–762 (2002). ArticleCAS Google Scholar
Roulet, E. et al. High-throughput SELEX–SAGE method for quantitative modeling of transcription-factor binding sites. Nat. Biotechnol.20, 831–835 (2002). ArticleCAS Google Scholar
Bulyk, M.L., Huang, X., Choo, Y. & Church, G.M. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc. Natl. Acad. Sci. USA98, 7158–7163 (2001). ArticleCAS Google Scholar
Mukherjee, S. et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet.36, 1331–1339 (2004). ArticleCAS Google Scholar
Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCAS Google Scholar
Liu, X., Noll, D.M., Lieb, J.D. & Clarke, N.D. DIP-chip: rapid and accurate determination of DNA-binding specificity. Genome Res.15, 421–427 (2005). ArticleCAS Google Scholar
Wilson, T.E., Fahrner, T.J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science252, 1296–1300 (1991). ArticleCAS Google Scholar
Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-hybrid system. Genome Res.14, 2093–2101 (2004). ArticleCAS Google Scholar
Joung, J.K., Ramm, E.I. & Pabo, C.O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA97, 7382–7387 (2000). ArticleCAS Google Scholar
Dove, S.L., Joung, J.K. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature386, 627–630 (1997). ArticleCAS Google Scholar
Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol.2, 28–36 (1994). CASPubMed Google Scholar
Wolfe, S.A., Greisman, H.A., Ramm, E.I. & Pabo, C.O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol.285, 1917–1934 (1999). ArticleCAS Google Scholar
Voz, M.L., Agten, N.S., Van de Ven, W.J. & Kas, K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res.60, 106–113 (2000). CASPubMed Google Scholar
Walhout, A.J. & Vidal, M. A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res.9, 1128–1134 (1999). ArticleCAS Google Scholar
Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science275, 657–661 (1997). ArticleCAS Google Scholar
Senger, K. et al. Immunity regulatory DNAs share common organizational features in Drosophila. Mol. Cell13, 19–32 (2004). ArticleCAS Google Scholar
Kovall, R.A. & Hendrickson, W.A. Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J.23, 3441–3451 (2004). ArticleCAS Google Scholar
Tun, T. et al. Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res.22, 965–971 (1994). ArticleCAS Google Scholar
Jun, S. & Desplan, C. Cooperative interactions between paired domain and homeodomain. Development122, 2639–2650 (1996). CASPubMed Google Scholar
Melnikova, I.N., Crute, B.E., Wang, S. & Speck, N.A. Sequence specificity of the core-binding factor. J. Virol.67, 2408–2411 (1993). CASPubMedPubMed Central Google Scholar
Golling, G., Li, L., Pepling, M., Stebbins, M. & Gergen, J.P. Drosophila homologs of the proto-oncogene product PEBP2/CBF beta regulate the DNA-binding properties of Runt. Mol. Cell. Biol.16, 932–942 (1996). ArticleCAS Google Scholar
Sosinsky, A., Bonin, C.P., Mann, R.S. & Honig, B. Target Explorer: an automated tool for the identification of new target genes for a specified set of transcription factors. Nucleic Acids Res.31, 3589–3592 (2003). ArticleCAS Google Scholar
Riddihough, G. & Ish-Horowicz, D. Individual stripe regulatory elements in the Drosophila hairy promoter respond to maternal, gap, and pair-rule genes. Genes Dev.5, 840–854 (1991). ArticleCAS Google Scholar
Saulier-Le Drean, B., Nasiadka, A., Dong, J. & Krause, H.M. Dynamic changes in the functions of Odd-skipped during early Drosophila embryogenesis. Development125, 4851–4861 (1998). CASPubMed Google Scholar
Serebriiskii, I. & Joung, J. in Protein-Protein Interactions: A Molecular Cloning Manual (ed. E. Golemis) 93–142, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001). Google Scholar
Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res.25, 1203–1210 (1997). ArticleCAS Google Scholar
Liu, X., Brutlag, D.L. & Liu, J.S. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput.6, 127–138 (2001). Google Scholar
Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res.18, 6097–6100 (1990). ArticleCAS Google Scholar
Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res.14, 1188–1190 (2004). ArticleCAS Google Scholar
Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma98, 81–85 (1989). ArticleCAS Google Scholar