An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets (original) (raw)
References
Schlessinger, J. & Lemmon, M.A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE2003, RE12 (2003). PubMed Google Scholar
Ang, X.L. & Wade Harper, J. SCF-mediated protein degradation and cell cycle control. Oncogene24, 2860–2870 (2005). ArticleCAS Google Scholar
Pawson, T. & Scott, J.D. Protein phosphorylation in signaling—50 years and counting. Trends Biochem. Sci.30, 286–290 (2005). ArticleCAS Google Scholar
Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.31, 3635–3641 (2003). ArticleCAS Google Scholar
Manning, B.D. & Cantley, L.C. Hitting the target: emerging technologies in the search for kinase substrates. Sci. STKE2002, PE49 (2002). PubMed Google Scholar
Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23, 94–101 (2005). ArticleCAS Google Scholar
Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20, 301–305 (2002). ArticleCAS Google Scholar
Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA101, 12130–12135 (2004). ArticleCAS Google Scholar
Collins, M.O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem.280, 5972–5982 (2005). ArticleCAS Google Scholar
Ballif, B.A., Villen, J., Beausoleil, S.A., Schwartz, D. & Gygi, S.P. Phosphoproteomic analysis of the developing mouse brain. Mol. Cell. Proteomics3, 1093–1101 (2004). ArticleCAS Google Scholar
Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4, 310–327 (2005). ArticleCAS Google Scholar
Nuhse, T.S., Stensballe, A., Jensen, O.N. & Peck, S.C. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell16, 2394–2405 (2004). Article Google Scholar
Loyet, K.M., Stults, J.T. & Arnott, D. Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol. Cell. Proteomics4, 235–245 (2005). ArticleCAS Google Scholar
Bussemaker, H.J., Li, H. & Siggia, E.D. Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc. Natl. Acad. Sci. USA97, 10096–10100 (2000). ArticleCAS Google Scholar
Melville, H. Moby-Dick, or, The whale (Signet Classic, New York, 1998). Google Scholar
Diella, F. et al. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics5, 79 (2004). Article Google Scholar
Rigoutsos, I. & Floratos, A. Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm. Bioinformatics14, 55–67 (1998). ArticleCAS Google Scholar
Jonassen, I., Collins, J.F. & Higgins, D.G. Finding flexible patterns in unaligned protein sequences. Protein Sci.4, 1587–1595 (1995). ArticleCAS Google Scholar
Nevill-Manning, C.G., Wu, T.D. & Brutlag, D.L. Highly specific protein sequence motifs for genome analysis. Proc. Natl. Acad. Sci. USA95, 5865–5871 (1998). ArticleCAS Google Scholar
Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res.18, 6097–6100 (1990). ArticleCAS Google Scholar
Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res.14, 1188–1190 (2004). ArticleCAS Google Scholar
Boucher, L., Ouzounis, C.A., Enright, A.J. & Blencowe, B.J. A genome-wide survey of RS domain proteins. RNA7, 1693–1701 (2001). CASPubMedPubMed Central Google Scholar
Fujimoto, J. et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl. Acad. Sci. USA93, 4181–4186 (1996). ArticleCAS Google Scholar
Iuchi, S. Three classes of C2H2 zinc finger proteins. Cell. Mol. Life Sci.58, 625–635 (2001). ArticleCAS Google Scholar
Songyang, Z. & Cantley, L.C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem. Sci.20, 470–475 (1995). ArticleCAS Google Scholar
Branch, D.R. & Mills, G.B. pp60c-src expression is induced by activation of normal human T lymphocytes. J. Immunol.154, 3678–3685 (1995). CASPubMed Google Scholar
Shin, N.Y. et al. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J. Biol. Chem.279, 38331–38337 (2004). ArticleCAS Google Scholar
Yates, J.R. III, Eng, J.K. & McCormack, A.L. Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem.67, 3202–3210 (1995). ArticleCAS Google Scholar