Designing dendrimers for biological applications (original) (raw)

References

  1. Buhleier, E., Wehner, W. & Vögtle, F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis (Mass.) 155–158 (1978).
  2. Denkewalter, R.G., Kolc, J. & Lukasavage, W.J. Macromolecular highly branched homogeneous compound based on lysine units. US Patent 4,289,872, (1981).
  3. Tomalia, D.A. et al. A new class of polymers-starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).
    CAS Google Scholar
  4. Newkome, G.R., Yao, Z., Baker, G.R. & Gupta, V.K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 50, 2003–2004 (1985).
    CAS Google Scholar
  5. Fréchet, J.M.J. & Tomalia, D.A. (eds.) Dendrimers and Other Dendritic Polymers. (John Wiley & Sons, Chichester, New York, USA, 2001).
    Google Scholar
  6. Tomalia, D.A., Naylor, A.M. & Goddard, W.A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Edn. Engl. 29, 138–175 (1990).
    Google Scholar
  7. de Brabander-van den Berg, E.M.M. & Meijer, E.W. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Edn Engl. 32, 1308–1311 (1993).
    Google Scholar
  8. Hawker, C.J. & Fréchet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990).
    CAS Google Scholar
  9. Sadler, K. & Tam, J.P. Peptide dendrimers: applications and synthesis. J. Biotechnol. 90, 195–229 (2002).
    CAS PubMed Google Scholar
  10. Ihre, H., Hult, A. & Söderlind, E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J. Am. Chem. Soc. 118, 6388–6395 (1996).
    CAS Google Scholar
  11. Grinstaff, M.W. Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry 8, 2838–2846 (2002).
    CAS Google Scholar
  12. Turnbull, W.B. & Stoddart, J.F. Design and synthesis of glycodendrimers. J. Biotechnol. 90, 231–255 (2002).
    CAS PubMed Google Scholar
  13. Nilsen, T.W., Grayzel, J. & Prensky, W. Dendritic nucleic acid structures. J. Theor. Biol. 187, 273–284 (1997).
    CAS Google Scholar
  14. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).
    CAS PubMed Google Scholar
  15. Liu, M., Kono, K. & Fréchet, J.M.J. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Release 65, 121–131 (2000).
    CAS PubMed Google Scholar
  16. Stevelmans, S. et al. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J. Am. Chem. Soc. 118, 7398–7399 (1996).
    CAS Google Scholar
  17. Mammen, M., Choi, S.K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl. 37, 2754–2794 (1998).
    Google Scholar
  18. Lundquist, J.J. & Toone, E.J. The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002).
    CAS PubMed Google Scholar
  19. André, S., Liu, B., Gabius, H.J. & Roy, R. First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org. Biomol. Chem. 1, 3909–3916 (2003).
    PubMed Google Scholar
  20. Jiang, Y.H. et al. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses 21, 207–213 (2005).
    CAS PubMed Google Scholar
  21. Hecht, S. & Fréchet, J.M.J. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Edn. Engl. 40, 74–91 (2001).
    CAS Google Scholar
  22. Kojima, C., Kono, K., Maruyama, K. & Takagishi, T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem. 11, 910–917 (2000).
    CAS PubMed Google Scholar
  23. Morgan, M.T. et al. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003).
    CAS PubMed Google Scholar
  24. Rozhkov, V., Wilson, D. & Vinogradov, S. Phosphorescent Pd porphyrin-dendrimers: tuning core accessibility by varying the hydrophobicity of the dendritic matrix. Macromolecules 35, 1991–1993 (2002).
    CAS Google Scholar
  25. Cloninger, M.J. Biological applications of dendrimers. Curr. Opin. Chem. Biol. 6, 742–748 (2002).
    CAS PubMed Google Scholar
  26. Stiriba, S.E., Frey, H. & Haag, R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Edn. Engl. 41, 1329–1334 (2002).
    CAS Google Scholar
  27. Boas, U. & Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63 (2004).
    CAS PubMed Google Scholar
  28. Gillies, E.R. & Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005).
    CAS PubMed Google Scholar
  29. Allen, T.M. & Cullis, P.R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).
    CAS PubMed Google Scholar
  30. Malik, N., Evagorou, E.G. & Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10, 767–776 (1999).
    CAS PubMed Google Scholar
  31. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).
    CAS PubMed Google Scholar
  32. Duncan, R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm. Sci. Technol. Today 2, 441–449 (1999).
    CAS PubMed Google Scholar
  33. Kukowska-Latallo, J.F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).
    CAS PubMed Google Scholar
  34. Wooley, K.L., Hawker, C.J. & Fréchet, J.M.J. Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules. J. Am. Chem. Soc. 115, 11496–11505 (1993).
    CAS Google Scholar
  35. Gillies, E.R. & Fréchet, J.M.J. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc. 124, 14137–14146 (2002).
    CAS PubMed Google Scholar
  36. Steffensen, M.B. & Simanek, E.E. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew. Chem. Int. Edn. Engl. 43, 5178–5180 (2004).
    CAS Google Scholar
  37. Li, Y., Cu, Y.T.H. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23, 885–889 (2005).
    CAS PubMed Google Scholar
  38. Haensler, J. & Szoka, F.C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379 (1993).
    CAS PubMed Google Scholar
  39. Tang, M.X., Redemann, C.T. & Szoka, F.C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703–714 (1996).
    CAS PubMed Google Scholar
  40. Vincent, L. et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer 105, 419–429 (2003).
    CAS PubMed Google Scholar
  41. Wiener, E.C. et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31, 1–8 (1994).
    CAS PubMed Google Scholar
  42. Margerum, L.D. et al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers. Effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J. Alloys Compd. 249, 185–190 (1997).
    CAS Google Scholar
  43. Kobayashi, H. & Brechbiel, M.W. Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol. Imaging 2, 1–10 (2003).
    CAS PubMed Google Scholar
  44. Ziemer, L.S., Lee, W.M.F., Vinogradov, S.A., Sehgal, C. & Wilson, D.F. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J. Appl. Physiol. 98, 1503–1510 (2005).
    CAS PubMed Google Scholar
  45. Dunphy, I., Vinogradov, S.A. & Wilson, D.F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem. 310, 191–198 (2002).
    CAS PubMed Google Scholar
  46. Briñas, R.P., Troxler, T., Hochstrasser, R.M. & Vinogradov, S.A. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J. Am. Chem. Soc. 127, 11851–11862 (2005).
    PubMed PubMed Central Google Scholar
  47. Supattapone, S., Nguyen, H.O.B., Cohen, F.E., Prusiner, S.B. & Scott, M.R. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 96, 14529–14534 (1999).
    CAS PubMed Google Scholar
  48. Roy, R. & Baek, M.G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. J. Biotechnol. 90, 291–309 (2002).
    CAS PubMed Google Scholar
  49. Bourne, N. et al. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob. Agents Chemother. 44, 2471–2474 (2000).
    CAS PubMed PubMed Central Google Scholar
  50. Wathier, M., Jung, P.J., Camahan, M.A., Kim, T. & Grinstaff, M.W. Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. J. Am. Chem. Soc. 126, 12744–12745 (2004).
    CAS PubMed Google Scholar
  51. Velazquez, A.J. et al. New dendritic adhesives for sutureless ophthalmic surgical procedures. In vitro studies of corneal laceration repair. Arch. Ophthalmol. 122, 867–870 (2004).
    PubMed Google Scholar
  52. Drobnik, J. & Rypacek, F. Soluble synthetic polymers in biological systems. Adv. Polym. Sci. 57, 1–50 (1984).
    CAS Google Scholar
  53. Roberts, J.C., Bhalgat, M.K. & Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996).
    CAS PubMed Google Scholar
  54. Malik, N. et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000).
    CAS PubMed Google Scholar
  55. Jevprasesphant, R. et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252, 263–266 (2003).
    CAS PubMed Google Scholar
  56. De Jesús, O.L.P., Ihre, H.R., Gagne, L., Fréchet, J.M.J. & Szoka, F.C. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem. 13, 453–461 (2002).
    Google Scholar
  57. Gillies, E.R., Dy, E., Fréchet, J.M.J. & Szoka, F.C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005).
    CAS PubMed Google Scholar
  58. Fuchs, S. et al. A surface-modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chemistry 10, 1167–1192 (2004).
    CAS PubMed Google Scholar
  59. Chen, H.T., Neerman, M.F., Parrish, A.R. & Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 126, 10044–10048 (2004).
    CAS PubMed Google Scholar
  60. Hong, S. et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem. 15, 774–782 (2004).
    CAS PubMed Google Scholar
  61. Kuo, J.H.S., Jan, M.S. & Chiu, H.W. Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells. J. Pharm. Pharmacol. 57, 489–495 (2005).
    CAS PubMed Google Scholar
  62. Neerman, M.F., Zhang, W., Parrish, A.R. & Simanek, E.E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm. 281, 129–132 (2004).
    CAS PubMed Google Scholar
  63. Seebach, D., Herrmann, G.F., Lengweiler, U.D., Bachmann, B.M. & Amrein, W. Synthesis and enzymatic degradation of dendrimers from (R)-3-hydroxy-butanoic acid and trimesic acid. Angew. Chem. Int. Edn. Engl. 35, 2795–2797 (1996).
    CAS Google Scholar
  64. Ihre, H.R., De Jesús, O.L.P., Szoka, F.C. & Fréchet, J.M.J. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem. 13, 443–452 (2002).
    CAS PubMed Google Scholar
  65. Lee, C.C., Grayson, S.M. & Fréchet, J.M.J. Synthesis of narrow-polydispersity degradable dendronized aliphatic polyesters. J. Polym. Sci. Part A: Polym. Chem. 42, 3563–3578 (2004).
    CAS Google Scholar
  66. Zhang, W. et al. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J. Am. Chem. Soc. 125, 5086–5094 (2003).
    CAS PubMed Google Scholar
  67. Rendle, P.M. et al. Glycodendriproteins: a synthetic glycoprotein mimic enzyme with branched sugar-display potently inhibits bacterial aggregation. J. Am. Chem. Soc. 126, 4750–4751 (2004).
    CAS PubMed Google Scholar
  68. Córdova, A. & Janda, K.D. Synthesis and catalytic antibody functionalization of dendrimers. J. Am. Chem. Soc. 123, 8248–8259 (2001).
    PubMed Google Scholar
  69. Haba, K. et al. Single-triggered trimeric prodrugs. Angew. Chem. Int. Edn. Engl. 44, 716–720 (2005).
    CAS Google Scholar
  70. Bracci, L. et al. Synthetic peptides in the form of dendrimers become resistant to protease activity. J. Biol. Chem. 278, 46590–46595 (2003).
    CAS PubMed Google Scholar
  71. Hussain, M. et al. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J. Control. Release 99, 139–155 (2004).
    CAS PubMed Google Scholar
  72. Smet, M., Liao, L.X., Dehaen, W. & McGrath, D.V. Photolabile dendrimers using _o_-nitrobenzyl ether linkages. Org. Lett. 2, 511–513 (2000).
    CAS PubMed Google Scholar
  73. Watanabe, S., Sato, M., Sakamoto, S., Yamaguchi, K. & Iwamura, M. New dendritic caged compounds: synthesis, mass spectrometric characterization, and photochemical properties of dendrimers with á-carboxy-2-nitrobenzyl caged compounds at their periphery. J. Am. Chem. Soc. 122, 12588–12589 (2000).
    CAS Google Scholar
  74. Amir, R.J., Pessah, N., Shamis, M. & Shabat, D. Self-immolative dendrimers. Angew. Chem. Int. Edn. Engl. 42, 4494–4499 (2003).
    CAS Google Scholar
  75. Shum, P., Kim, J.M. & Thompson, D.H. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev. 53, 273–284 (2001).
    CAS PubMed Google Scholar
  76. Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Geometric disassembly of dendrimers: dendritic amplification. J. Am. Chem. Soc. 125, 15688–15689 (2003).
    CAS PubMed Google Scholar
  77. de Groot, F.M.H., Albrecht, C., Koekkoek, R., Beusker, P.H. & Scheeren, H.W. “Cascade-release dendrimers” liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Edn. Engl. 42, 4490–4494 (2003).
    CAS Google Scholar
  78. Li, S., Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Dendrimer disassembly by benzyl ether depolymerization. J. Am. Chem. Soc. 125, 10516–10517 (2003).
    CAS PubMed Google Scholar
  79. Nishikawa, M., Takakura, Y. & Hashida, M. Pharmacokinetic evaluation of polymeric carriers. Adv. Drug Deliv. Rev. 21, 135–155 (1996).
    CAS Google Scholar
  80. Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).
    CAS PubMed Google Scholar
  81. Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L. & Brenner, B.M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol. 74, 583–593 (1979).
    CAS PubMed Google Scholar
  82. Ohlson, M. et al. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am. J. Physiol. Renal Physiol. 281, F103–F113 (2001).
    CAS PubMed Google Scholar
  83. Brochard-Wyart, F. & de Gennes, P.G. Injection threshold for a star polymer inside a nanopore. C. R. l'Acadamie. Sci. Ser. II Univers 323, 473–479 (1996).
    CAS Google Scholar
  84. Lee, C.C., Yoshida, M., Fréchet, J.M.J., Dy, E.E. & Szoka, F.C. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug. Chem. 16, 535–541 (2005).
    CAS PubMed Google Scholar
  85. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003).
    CAS PubMed Google Scholar
  86. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–744 (1999).
    CAS Google Scholar
  87. King, H.D. et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 45, 4336–4343 (2002).
    CAS PubMed Google Scholar
  88. Choe, Y.H. et al. Anticancer drug delivery systems: multi-loaded 4_N_-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 79, 55–70 (2002).
    CAS PubMed Google Scholar
  89. Pasut, G., Scaramuzza, S., Schiavon, O., Mendichi, R. & Veronese, F.M. PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym. 20, 213–230 (2005).
    CAS Google Scholar
  90. Defoort, J.P., Nardelli, B., Huang, W., Ho, D.D. & Tam, J.P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc. Natl. Acad. Sci. USA 89, 3879–3883 (1992).
    CAS PubMed Google Scholar
  91. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci. Part A: Polym. Chem. 38, 2505–2525 (2000).
    CAS Google Scholar
  92. Sunder, A., Heinemann, J. & Frey, H. Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. Chemistry 6, 2499–2506 (2000).
    CAS PubMed Google Scholar
  93. Schlüter, A.D. & Rabe, J.P. Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Edn. Engl. 39, 864–883 (2000).
    Google Scholar
  94. Gössl, I., Shu, L., Schlüter, A.D. & Rabe, J.P. Molecular structure of single DNA complexes with positively charged dendronized polymers. J. Am. Chem. Soc. 124, 6860–6865 (2002).
    PubMed Google Scholar

Download references