Designing dendrimers for biological applications (original) (raw)
References
Buhleier, E., Wehner, W. & Vögtle, F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis (Mass.) 155–158 (1978).
Denkewalter, R.G., Kolc, J. & Lukasavage, W.J. Macromolecular highly branched homogeneous compound based on lysine units. US Patent 4,289,872, (1981).
Tomalia, D.A. et al. A new class of polymers-starburst-dendritic macromolecules. Polym. J.17, 117–132 (1985). CAS Google Scholar
Newkome, G.R., Yao, Z., Baker, G.R. & Gupta, V.K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem.50, 2003–2004 (1985). CAS Google Scholar
Fréchet, J.M.J. & Tomalia, D.A. (eds.) Dendrimers and Other Dendritic Polymers. (John Wiley & Sons, Chichester, New York, USA, 2001). Google Scholar
Tomalia, D.A., Naylor, A.M. & Goddard, W.A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Edn. Engl.29, 138–175 (1990). Google Scholar
de Brabander-van den Berg, E.M.M. & Meijer, E.W. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Edn Engl.32, 1308–1311 (1993). Google Scholar
Hawker, C.J. & Fréchet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc.112, 7638–7647 (1990). CAS Google Scholar
Sadler, K. & Tam, J.P. Peptide dendrimers: applications and synthesis. J. Biotechnol.90, 195–229 (2002). CASPubMed Google Scholar
Ihre, H., Hult, A. & Söderlind, E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J. Am. Chem. Soc.118, 6388–6395 (1996). CAS Google Scholar
Grinstaff, M.W. Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry8, 2838–2846 (2002). CAS Google Scholar
Turnbull, W.B. & Stoddart, J.F. Design and synthesis of glycodendrimers. J. Biotechnol.90, 231–255 (2002). CASPubMed Google Scholar
Nilsen, T.W., Grayzel, J. & Prensky, W. Dendritic nucleic acid structures. J. Theor. Biol.187, 273–284 (1997). CAS Google Scholar
Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater.3, 38–42 (2004). CASPubMed Google Scholar
Liu, M., Kono, K. & Fréchet, J.M.J. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Release65, 121–131 (2000). CASPubMed Google Scholar
Stevelmans, S. et al. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J. Am. Chem. Soc.118, 7398–7399 (1996). CAS Google Scholar
Mammen, M., Choi, S.K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl.37, 2754–2794 (1998). Google Scholar
Lundquist, J.J. & Toone, E.J. The cluster glycoside effect. Chem. Rev.102, 555–578 (2002). CASPubMed Google Scholar
André, S., Liu, B., Gabius, H.J. & Roy, R. First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org. Biomol. Chem.1, 3909–3916 (2003). PubMed Google Scholar
Jiang, Y.H. et al. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses21, 207–213 (2005). CASPubMed Google Scholar
Hecht, S. & Fréchet, J.M.J. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Edn. Engl.40, 74–91 (2001). CAS Google Scholar
Kojima, C., Kono, K., Maruyama, K. & Takagishi, T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem.11, 910–917 (2000). CASPubMed Google Scholar
Morgan, M.T. et al. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc.125, 15485–15489 (2003). CASPubMed Google Scholar
Rozhkov, V., Wilson, D. & Vinogradov, S. Phosphorescent Pd porphyrin-dendrimers: tuning core accessibility by varying the hydrophobicity of the dendritic matrix. Macromolecules35, 1991–1993 (2002). CAS Google Scholar
Cloninger, M.J. Biological applications of dendrimers. Curr. Opin. Chem. Biol.6, 742–748 (2002). CASPubMed Google Scholar
Stiriba, S.E., Frey, H. & Haag, R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Edn. Engl.41, 1329–1334 (2002). CAS Google Scholar
Boas, U. & Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev.33, 43–63 (2004). CASPubMed Google Scholar
Gillies, E.R. & Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today10, 35–43 (2005). CASPubMed Google Scholar
Allen, T.M. & Cullis, P.R. Drug delivery systems: entering the mainstream. Science303, 1818–1822 (2004). CASPubMed Google Scholar
Malik, N., Evagorou, E.G. & Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs10, 767–776 (1999). CASPubMed Google Scholar
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46, 6387–6392 (1986). CASPubMed Google Scholar
Duncan, R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm. Sci. Technol. Today2, 441–449 (1999). CASPubMed Google Scholar
Kukowska-Latallo, J.F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.65, 5317–5324 (2005). CASPubMed Google Scholar
Wooley, K.L., Hawker, C.J. & Fréchet, J.M.J. Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules. J. Am. Chem. Soc.115, 11496–11505 (1993). CAS Google Scholar
Gillies, E.R. & Fréchet, J.M.J. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc.124, 14137–14146 (2002). CASPubMed Google Scholar
Steffensen, M.B. & Simanek, E.E. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew. Chem. Int. Edn. Engl.43, 5178–5180 (2004). CAS Google Scholar
Li, Y., Cu, Y.T.H. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol.23, 885–889 (2005). CASPubMed Google Scholar
Haensler, J. & Szoka, F.C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem.4, 372–379 (1993). CASPubMed Google Scholar
Tang, M.X., Redemann, C.T. & Szoka, F.C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem.7, 703–714 (1996). CASPubMed Google Scholar
Vincent, L. et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer105, 419–429 (2003). CASPubMed Google Scholar
Wiener, E.C. et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med.31, 1–8 (1994). CASPubMed Google Scholar
Margerum, L.D. et al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers. Effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J. Alloys Compd.249, 185–190 (1997). CAS Google Scholar
Kobayashi, H. & Brechbiel, M.W. Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol. Imaging2, 1–10 (2003). CASPubMed Google Scholar
Ziemer, L.S., Lee, W.M.F., Vinogradov, S.A., Sehgal, C. & Wilson, D.F. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J. Appl. Physiol.98, 1503–1510 (2005). CASPubMed Google Scholar
Dunphy, I., Vinogradov, S.A. & Wilson, D.F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem.310, 191–198 (2002). CASPubMed Google Scholar
Briñas, R.P., Troxler, T., Hochstrasser, R.M. & Vinogradov, S.A. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J. Am. Chem. Soc.127, 11851–11862 (2005). PubMedPubMed Central Google Scholar
Supattapone, S., Nguyen, H.O.B., Cohen, F.E., Prusiner, S.B. & Scott, M.R. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA96, 14529–14534 (1999). CASPubMed Google Scholar
Roy, R. & Baek, M.G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. J. Biotechnol.90, 291–309 (2002). CASPubMed Google Scholar
Bourne, N. et al. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob. Agents Chemother.44, 2471–2474 (2000). CASPubMedPubMed Central Google Scholar
Wathier, M., Jung, P.J., Camahan, M.A., Kim, T. & Grinstaff, M.W. Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. J. Am. Chem. Soc.126, 12744–12745 (2004). CASPubMed Google Scholar
Velazquez, A.J. et al. New dendritic adhesives for sutureless ophthalmic surgical procedures. In vitro studies of corneal laceration repair. Arch. Ophthalmol.122, 867–870 (2004). PubMed Google Scholar
Drobnik, J. & Rypacek, F. Soluble synthetic polymers in biological systems. Adv. Polym. Sci.57, 1–50 (1984). CAS Google Scholar
Roberts, J.C., Bhalgat, M.K. & Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res.30, 53–65 (1996). CASPubMed Google Scholar
Malik, N. et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release65, 133–148 (2000). CASPubMed Google Scholar
Jevprasesphant, R. et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm.252, 263–266 (2003). CASPubMed Google Scholar
De Jesús, O.L.P., Ihre, H.R., Gagne, L., Fréchet, J.M.J. & Szoka, F.C. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem.13, 453–461 (2002). Google Scholar
Gillies, E.R., Dy, E., Fréchet, J.M.J. & Szoka, F.C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm.2, 129–138 (2005). CASPubMed Google Scholar
Fuchs, S. et al. A surface-modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chemistry10, 1167–1192 (2004). CASPubMed Google Scholar
Chen, H.T., Neerman, M.F., Parrish, A.R. & Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc.126, 10044–10048 (2004). CASPubMed Google Scholar
Hong, S. et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem.15, 774–782 (2004). CASPubMed Google Scholar
Kuo, J.H.S., Jan, M.S. & Chiu, H.W. Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells. J. Pharm. Pharmacol.57, 489–495 (2005). CASPubMed Google Scholar
Neerman, M.F., Zhang, W., Parrish, A.R. & Simanek, E.E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm.281, 129–132 (2004). CASPubMed Google Scholar
Seebach, D., Herrmann, G.F., Lengweiler, U.D., Bachmann, B.M. & Amrein, W. Synthesis and enzymatic degradation of dendrimers from (R)-3-hydroxy-butanoic acid and trimesic acid. Angew. Chem. Int. Edn. Engl.35, 2795–2797 (1996). CAS Google Scholar
Ihre, H.R., De Jesús, O.L.P., Szoka, F.C. & Fréchet, J.M.J. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem.13, 443–452 (2002). CASPubMed Google Scholar
Lee, C.C., Grayson, S.M. & Fréchet, J.M.J. Synthesis of narrow-polydispersity degradable dendronized aliphatic polyesters. J. Polym. Sci. Part A: Polym. Chem.42, 3563–3578 (2004). CAS Google Scholar
Zhang, W. et al. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J. Am. Chem. Soc.125, 5086–5094 (2003). CASPubMed Google Scholar
Rendle, P.M. et al. Glycodendriproteins: a synthetic glycoprotein mimic enzyme with branched sugar-display potently inhibits bacterial aggregation. J. Am. Chem. Soc.126, 4750–4751 (2004). CASPubMed Google Scholar
Córdova, A. & Janda, K.D. Synthesis and catalytic antibody functionalization of dendrimers. J. Am. Chem. Soc.123, 8248–8259 (2001). PubMed Google Scholar
Haba, K. et al. Single-triggered trimeric prodrugs. Angew. Chem. Int. Edn. Engl.44, 716–720 (2005). CAS Google Scholar
Bracci, L. et al. Synthetic peptides in the form of dendrimers become resistant to protease activity. J. Biol. Chem.278, 46590–46595 (2003). CASPubMed Google Scholar
Hussain, M. et al. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J. Control. Release99, 139–155 (2004). CASPubMed Google Scholar
Smet, M., Liao, L.X., Dehaen, W. & McGrath, D.V. Photolabile dendrimers using _o_-nitrobenzyl ether linkages. Org. Lett.2, 511–513 (2000). CASPubMed Google Scholar
Watanabe, S., Sato, M., Sakamoto, S., Yamaguchi, K. & Iwamura, M. New dendritic caged compounds: synthesis, mass spectrometric characterization, and photochemical properties of dendrimers with á-carboxy-2-nitrobenzyl caged compounds at their periphery. J. Am. Chem. Soc.122, 12588–12589 (2000). CAS Google Scholar
Amir, R.J., Pessah, N., Shamis, M. & Shabat, D. Self-immolative dendrimers. Angew. Chem. Int. Edn. Engl.42, 4494–4499 (2003). CAS Google Scholar
Shum, P., Kim, J.M. & Thompson, D.H. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev.53, 273–284 (2001). CASPubMed Google Scholar
Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Geometric disassembly of dendrimers: dendritic amplification. J. Am. Chem. Soc.125, 15688–15689 (2003). CASPubMed Google Scholar
de Groot, F.M.H., Albrecht, C., Koekkoek, R., Beusker, P.H. & Scheeren, H.W. “Cascade-release dendrimers” liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Edn. Engl.42, 4490–4494 (2003). CAS Google Scholar
Li, S., Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Dendrimer disassembly by benzyl ether depolymerization. J. Am. Chem. Soc.125, 10516–10517 (2003). CASPubMed Google Scholar
Nishikawa, M., Takakura, Y. & Hashida, M. Pharmacokinetic evaluation of polymeric carriers. Adv. Drug Deliv. Rev.21, 135–155 (1996). CAS Google Scholar
Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci.83, 601–606 (1994). CASPubMed Google Scholar
Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L. & Brenner, B.M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol.74, 583–593 (1979). CASPubMed Google Scholar
Ohlson, M. et al. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am. J. Physiol. Renal Physiol.281, F103–F113 (2001). CASPubMed Google Scholar
Brochard-Wyart, F. & de Gennes, P.G. Injection threshold for a star polymer inside a nanopore. C. R. l'Acadamie. Sci. Ser. II Univers323, 473–479 (1996). CAS Google Scholar
Lee, C.C., Yoshida, M., Fréchet, J.M.J., Dy, E.E. & Szoka, F.C. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug. Chem.16, 535–541 (2005). CASPubMed Google Scholar
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov.2, 347–360 (2003). CASPubMed Google Scholar
Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev.51, 691–744 (1999). CAS Google Scholar
King, H.D. et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem.45, 4336–4343 (2002). CASPubMed Google Scholar
Choe, Y.H. et al. Anticancer drug delivery systems: multi-loaded 4_N_-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release79, 55–70 (2002). CASPubMed Google Scholar
Pasut, G., Scaramuzza, S., Schiavon, O., Mendichi, R. & Veronese, F.M. PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym.20, 213–230 (2005). CAS Google Scholar
Defoort, J.P., Nardelli, B., Huang, W., Ho, D.D. & Tam, J.P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc. Natl. Acad. Sci. USA89, 3879–3883 (1992). CASPubMed Google Scholar
Voit, B. New developments in hyperbranched polymers. J. Polym. Sci. Part A: Polym. Chem.38, 2505–2525 (2000). CAS Google Scholar
Sunder, A., Heinemann, J. & Frey, H. Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. Chemistry6, 2499–2506 (2000). CASPubMed Google Scholar
Schlüter, A.D. & Rabe, J.P. Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Edn. Engl.39, 864–883 (2000). Google Scholar
Gössl, I., Shu, L., Schlüter, A.D. & Rabe, J.P. Molecular structure of single DNA complexes with positively charged dendronized polymers. J. Am. Chem. Soc.124, 6860–6865 (2002). PubMed Google Scholar