Global mapping of pharmacological space (original) (raw)
Schuffenhauer, A. & Jacoby, E. Annotating and mining the ligand-target chemogenomics knowledge space. Drug Discov. Today: BIOSILICO2, 190–200 (2004). ArticleCAS Google Scholar
Strausberg, R.L. & Schreiber, S.L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science300, 294–295 (2003). ArticleCAS Google Scholar
Weinstein, J.N. et al. An information intensive approach to the molecular pharmacology of cancer. Science275, 343–349 (1997). ArticleCAS Google Scholar
Roth, B.L., Kroeze, W.K., Patel, S. & Lopez, E. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrasment of riches? Neuroscientist6, 252–262 (2000). ArticleCAS Google Scholar
Krejsa, C.M. et al. Predicting ADME properties and side effects: the BioPrint approach. Curr. Opin. Drug Discov. Develop.6, 470–480 (2003). CAS Google Scholar
Horvath, D. & Jeandenans, C. Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces-a novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles. J. Chem. Inf. Comput. Sci.43, 680–690 (2003). ArticleCAS Google Scholar
Root, D.E., Flaherty, S.P., Kelley, B.P. & Stockwell, B. Biological mechanism profiling using an annotated compound library. Chem. Biol.10, 881–892 (2003). ArticleCAS Google Scholar
Wallqvist, A. et al. Mining the NCI screening database: explorations of agents involved in cell cycle regulation. Prog. Cell Cycle Res.5, 173–179 (2003). PubMed Google Scholar
Piatetski-Shapiro, G. & Frawley, W. Knowledge Discovery in Databases (MIT Press, Cambridge, 1992). Google Scholar
Klösgen, W. & Zytkow, J.M. (eds.). Handbook of Data Mining and Knowledge Discovery (Oxford University Press, Oxford, 2002). Google Scholar
Drews, J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol.14, 1516–1518 (1996). ArticleCAS Google Scholar
Drews, J. & Ryser, S. Classic drug targets. Nat. Biotechnol.15, 1318–1319 (1997). ArticleCAS Google Scholar
Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov.1, 727–730 (2002). ArticleCAS Google Scholar
Golden, J.B. Prioritizing the human genome: knowledge management for drug discovery. Curr. Opin. Drug Discov. Develop.6, 310–316 (2003). CAS Google Scholar
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev.23, 3–25 (1997). ArticleCAS Google Scholar
Van Gestel, S. & Schuermans, V. Thirty-three years of drug discovery and research with Dr. Paul Janssen. Drug Dev. Res.8, 1–13 (1986). ArticleCAS Google Scholar
Sneader, W. Drug Prototypes and Their Exploitation (Wiley, London, 1996). Google Scholar
Wermuth, C.G. Selective optimization of side activities: another way for drug discovery. J. Med. Chem.47, 1303–1314 (2004). ArticleCAS Google Scholar
McGovern, S.L., Helfand, B.T., Feng, B. & Shoichet, B.K. A specific mechanism of nonspecific inhibition. J. Med. Chem.46, 4265–4272 (2003). ArticleCAS Google Scholar
Vieth, M. et al. Kinomics—structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta1697, 243–257 (2004). ArticleCAS Google Scholar
Vieth, M., Sutherland, J.J., Robertson, D.H. & Campbell, R.M. Kinomics: characterizing the therapeutically validated kinase space. Drug Discov. Today10, 839–846 (2005). ArticleCAS Google Scholar
Frye, S.V. Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem. Biol.6, R3–R7 (1999). ArticleCAS Google Scholar
Xia, X., Maliski, E.G., Gallant, P. & Rogers, D. Classification of kinase inhibitors using a Bayesian model. J. Med. Chem.47, 4463–4470 (2004). ArticleCAS Google Scholar
Rogers, D., Brown, R.D. & Hahn, M. Using extended-connectivity fingerprints with laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen.10, 682–686 (2005). ArticleCAS Google Scholar
Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature432, 855–861 (2004). ArticleCAS Google Scholar
Vieth, M. et al. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem.47, 224–232 (2004). ArticleCAS Google Scholar
Wenlock, M.C., Austin, R.P., Barton, P., Davis, A.M. & Leeson, P.D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem.46, 1250–1256 (2003). ArticleCAS Google Scholar
Blake, J.F. Examination of the computed molecular properties of compounds selected for clinical development. Biotechniques (June) Suppl.,16–20 (2003).
Ajay, A., Walters, W.P. & Murcko, M.A. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem.41, 3314–3324 (1998). ArticleCAS Google Scholar
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods44, 235–249 (2000). ArticleCAS Google Scholar
Wang, J. & Ramnarayan, K. Towards designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds. J. Comb. Chem.1, 524–533 (1999). ArticleCAS Google Scholar
Walters, W.P. Ajay & Murcko, M.A. Recognizing molecules with drug-like properties. Curr. Opin. Chem. Biol.3, 384–387 (1999). ArticleCAS Google Scholar
Podlogar, B.L., Muegge, I. & Brice, L.J. Computational methods to estimate drug development paramenters. Curr. Opin. Drug Discov. Devel.4, 102–109 (2001). CASPubMed Google Scholar
Muegge, I., Heald, S.L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem.44, 1841–1846 (2001). ArticleCAS Google Scholar
Veber, D.F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.45, 2615–2623 (2002). ArticleCAS Google Scholar
Proudfoot, J.R. Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg. Med. Chem. Lett.12, 1647–1650 (2002). ArticleCAS Google Scholar
Egan, W.J., Walters, W.P. & Murcko, M.A. Guiding molecules towards drug-likeness. Curr. Opin. Drug Discov. Devel.5, 540–549 (2002). CASPubMed Google Scholar
Walters, W.P. & Murcko, M.A. Prediction of 'drug-likeness'. Adv. Drug Deliv. Rev.54, 255–271 (2002). ArticleCAS Google Scholar
Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev.23, 302–321 (2003). ArticleCAS Google Scholar
Lajiness, M.S., Vieth, M. & Erickson, J. Molecular properties that influence oral drug-like behavior. Curr. Opin. Drug Discov. Devel.7, 470–477 (2004). CASPubMed Google Scholar
Stockwell, B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet.1, 116–125 (2000). ArticleCAS Google Scholar
Schuffenhauer, A. et al. An ontology for pharmaceutical ligands and its applications for in silico screening and library design. J. Chem. Inf. Comput. Sci.42, 947–955 (2002). ArticleCAS Google Scholar
Feldman, H.J., Dumontier, M., Ling, S., Haider, N. & Hogue, C.W. CO: A chemical ontology for identification of functional groups and semantic comparison of small molecules. FEBS Lett.579, 4685–4691 (2005). ArticleCAS Google Scholar
Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov.3, 353–359 (2004). ArticleCAS Google Scholar
Connolly, T. & Begg, C. Database Systems, A Practical Approach to Design, Implementation and Management., edn. 3 (Addison Wesley, Reading, MA, 2002). Google Scholar
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). ArticleCAS Google Scholar
R Core Development Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2005).
Andrews, P.R., Craik, D.J. & Martin, J.L. Functional group contributions to drug-receptor interactions. J. Med. Chem.27, 1648–1657 (1984). ArticleCAS Google Scholar
Hopkins, A.L., Groom, C.R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today9, 430–431 (2004). Article Google Scholar
Kuntz, I.D., Chen, K., Sharp, K.A. & Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA96, 9997–10002 (1999). ArticleCAS Google Scholar