Male, D., Brostoff, J., Roth, D. & Roitt, I. Immunology (Mosby-Elsevier, Philadelphia, 2006). Google Scholar
Abdul Ajees, A. et al. The structure of complement C3b provides insights into complement activation and regulation. Nature444, 221–225 (2006). ArticleCASPubMed Google Scholar
Janssen, B.J. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature437, 505–511 (2005). ArticleCASPubMed Google Scholar
Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature444, 213–216 (2006). ArticleCASPubMed Google Scholar
Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature444, 217–220 (2006). ArticleCASPubMed Google Scholar
Overturf, G.D. Indications for the immunological evaluation of patients with meningitis. Clin. Infect. Dis.36, 189–194 (2003). ArticlePubMed Google Scholar
Huber-Lang, M. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med.12, 682–687 (2006). ArticleCASPubMed Google Scholar
Muller-Eberhard, H.J. Molecular organization and function of the complement system. Annu. Rev. Biochem.57, 321–347 (1988). ArticleCASPubMed Google Scholar
Rabiet, M.J., Huet, E. & Boulay, F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie89, 1089–1106 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, N.J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature446, 203–207 (2007). ArticleCASPubMed Google Scholar
Yamashina, M. et al. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med.323, 1184–1189 (1990). ArticleCASPubMed Google Scholar
Motoyama, N., Okada, N., Yamashina, M. & Okada, H. Paroxysmal nocturnal hemoglobinuria due to hereditary nucleotide deletion in the HRF20 (CD59) gene. Eur. J. Immunol.22, 2669–2673 (1992). ArticleCASPubMed Google Scholar
Platonov, A.E., Vershinina, I.V., Kuijper, E.J., Borrow, R. & Kayhty, H. Long term effects of vaccination of patients deficient in a late complement component with a tetravalent meningococcal polysaccharide vaccine. Vaccine21, 4437–4447 (2003). ArticleCASPubMed Google Scholar
Thomas, T.C. et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol. Immunol.33, 1389–1401 (1996). ArticleCASPubMed Google Scholar
Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature332, 323–327 (1988). ArticleCASPubMed Google Scholar
Weng, N.P., Yu-Lee, L.Y., Sanz, I., Patten, B.M. & Marcus, D.M. Structure and specificities of anti-ganglioside autoantibodies associated with motor neuropathies. J. Immunol.149, 2518–2529 (1992). CASPubMed Google Scholar
Klein, R., Jaenichen, R. & Zachau, H.G. Expressed human immunoglobulin kappa genes and their hypermutation. Eur. J. Immunol.23, 3248–3262 (1993). ArticleCASPubMed Google Scholar
Mueller, J.P. et al. Humanized porcine VCAM-specific monoclonal antibodies with chimeric IgG2/G4 constant regions block human leukocyte binding to porcine endothelial cells. Mol. Immunol.34, 441–452 (1997). ArticleCASPubMed Google Scholar
Canfield, S.M. & Morrison, S.L. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J. Exp. Med.173, 1483–1491 (1991). ArticleCASPubMed Google Scholar
Tao, M.H., Smith, R.I. & Morrison, S.L. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J. Exp. Med.178, 661–667 (1993). ArticleCASPubMed Google Scholar
Smith, R.I., Coloma, M.J. & Morrison, S.L. Addition of a mu-tailpiece to IgG results in polymeric antibodies with enhanced effector functions including complement-mediated cytolysis by IgG4. J. Immunol.154, 2226–2236 (1995). CASPubMed Google Scholar
Hill, A. et al. Sustained response and long-term safety of eculizumab in paroxysmal nocturnal hemoglobinuria. Blood106, 2559–2565 (2005). ArticleCASPubMed Google Scholar
Wang, Y., Rollins, S.A., Madri, J.A. & Matis, L.A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl. Acad. Sci. USA92, 8955–8959 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wang,Y. et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc. Natl. Acad. Sci. USA93, 8563–8568 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jain, R.I., Moreland, L.W., Caldwell, J.R., Rollins, S.A. & Mojcik, C.F. A single dose, placebo controlled, double blind, phase I study of the humanized anti-C5 antibody h5G1.1 in patients with rheumatoid arthritis. Arthritis Rheum.42, S77 (1999). Google Scholar
Rother, R.P., Mojcik, C.F. & McCroskery, E.W. Inhibition of terminal complement: a novel therapeutic approach for the treatment of systemic lupus erythematosus. Lupus13, 328–334 (2004). ArticleCASPubMed Google Scholar
Verrier, E.D. et al. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial. J. Am. Med. Assoc.291, 2319–2327 (2004). ArticleCAS Google Scholar
Armstrong, P.W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. J. Am. Med. Assoc.297, 43–51 (2007). ArticleCAS Google Scholar
Tesser, J. et al. Safety and efficacy of the humanized anti-C5 antibody h5G1.1 in patients with rheumatoid arthritis. Arthritis Rheum.44, S274 (2001). Google Scholar
Appel, G. et al. Eculizumab (C5 complement inhibitor) in the treatment of idiopathic membranous nephropathy (IMN): Preliminary baseline and pharmacokinetic (PK) /Pharmacodynamic (PD) Data. J. Am. Soc. Nephrol.13, 668a (2002). Google Scholar
Hill, A. et al. The incidence and prevalence of paroxysmal nocturnal hemoglobinuria (PNH) and survival of patients in Yorkshire. Blood108, 985 (2006). ArticleCAS Google Scholar
Takeda, J. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell73, 703–711 (1993). ArticleCASPubMed Google Scholar
Bessler, M. et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J.13, 110–117 (1994). ArticleCASPubMedPubMed Central Google Scholar
Oni, S.B., Osunkoya, B.O. & Luzzatto, L. Paroxysmal nocturnal hemoglobinuria: evidence for monoclonal origin of abnormal red cells. Blood36, 145–152 (1970). CASPubMed Google Scholar
Araten, D.J., Nafa, K., Pakdeesuwan, K. & Luzzatto, L. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc. Natl. Acad. Sci. USA96, 5209–5214 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dacie, J. [Paroxysmal nocturnal haemoglobinuria.] Sangre (Barc.)25, 890–895 (1980). CAS Google Scholar
Rotoli, B. & Luzzatto, L. Paroxysmal nocturnal hemoglobinuria. Semin. Hematol.26, 201–207 (1989). CASPubMed Google Scholar
Rawstron, A.C. et al. The PNH phenotype cells that emerge in most patients after CAMPATH-1H therapy are present prior to treatment. Br. J. Haematol.107, 148–153 (1999). ArticleCASPubMed Google Scholar
Hansch, G.M., Schonermark, S. & Roelcke, D. Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. J. Clin. Invest.80, 7–12 (1987). ArticleCASPubMedPubMed Central Google Scholar
Okada, N., Harada, R. & Okada, H. Erythrocytes of patients with paroxysmal nocturnal hemoglobinuria acquire resistance to complement attack by purified 20-kD homologous restriction factor. Clin. Exp. Immunol.80, 109–113 (1990). ArticleCASPubMedPubMed Central Google Scholar
Holguin, M.H., Fredrick, L.R., Bernshaw, N.J., Wilcox, L.A. & Parker, C.J. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J. Clin. Invest.84, 7–17 (1989). ArticleCASPubMedPubMed Central Google Scholar
Rollins, S.A. & Sims, P.J. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J. Immunol.144, 3478–3483 (1990). CASPubMed Google Scholar
Rosenfeld, S.I., Jenkins, D.E. Jr, & Leddy, J.P. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes. Studies on C9 binding and incorporation into high molecular weight complexes. J. Exp. Med.164, 981–997 (1986). ArticleCASPubMed Google Scholar
Brodsky, R.A. Paroxysmal nocturnal hemoglobinuria. in Hematology: Basic Principles and Practice (eds. Hoffman, R. & Benz E. J. Jr. et al.) 419–427 (Churchill Livingstone, Philadelphia, 2005). Google Scholar
Bottomley, A. et al. Health-related quality of life in survivors of locally advanced breast cancer: an international randomised controlled phase III trial. Lancet Oncol.6, 287–294 (2005). ArticlePubMed Google Scholar
Cella, D., Lai, J.S., Chang, C.H., Peterman, A. & Slavin, M. Fatigue in cancer patients compared with fatigue in the general United States population. Cancer94, 528–538 (2002). ArticlePubMed Google Scholar
Wisloff, F., Gulbrandsen, N., Hjorth, M., Lenhoff, S. & Fayers, P. Quality of life may be affected more by disease parameters and response to therapy than by haemoglobin changes. Eur. J. Haematol.75, 293–298 (2005). ArticlePubMed Google Scholar
Rother, R.P., Bell, L., Hillmen, P. & Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. J. Am. Med. Assoc. Review article correlating intravascular hemolysis and cell-free plasma hemoglobin to the clinical sequelae of PNH and other hemolytic diseases 293, 1653–1662 (2005). ArticleCAS Google Scholar
Hill, A., Rother, R.P. & Hillmen, P. Improvement in the symptoms of smooth muscle dystonia during eculizumab therapy in paroxysmal nocturnal hemoglobinuria. Haematologica90, ECR40 (2005). PubMed Google Scholar
Gralnick, H.R. et al. Activated platelets in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol.91, 697–702 (1995). ArticleCASPubMed Google Scholar
Audebert, H.J., Planck, J., Eisenburg, M., Schrezenmeier, H. & Haberl, R.L. Cerebral ischemic infarction in paroxysmal nocturnal hemoglobinuria report of 2 cases and updated review of 7 previously published patients. J. Neurol.252, 1379–1386 (2005). ArticlePubMed Google Scholar
Hall, C., Richards, S. & Hillmen, P. Primary prophylaxis with warfarin prevents thrombosis in paroxysmal nocturnal hemoglobinuria (PNH). Blood102, 3587–3591 (2003). ArticleCASPubMed Google Scholar
Olsen, S.B. et al. Enhancement of platelet deposition by cross-linked hemoglobin in a rat carotid endarterectomy model. Circulation93, 327–332 (1996). ArticleCASPubMed Google Scholar
Radomski, M.W., Palmer, R.M. & Moncada, S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet2, 1057–1058 (1987). ArticleCASPubMed Google Scholar
Radomski, M.W., Palmer, R.M. & Moncada, S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol.92, 639–646 (1987). ArticleCASPubMedPubMed Central Google Scholar
Shao, J. et al. Protective role of nitric oxide in a model of thrombotic microangiopathy in rats. J. Am. Soc. Nephrol.12, 2088–2097 (2001). CASPubMed Google Scholar
Catani, M.V., Bernassola, F., Rossi, A. & Melino, G. Inhibition of clotting factor XIII activity by nitric oxide. Biochem. Biophys. Res. Commun.249, 275–278 (1998). ArticleCASPubMed Google Scholar
Kayanoki, Y. et al. Reduced nitric oxide production by L-arginine deficiency in lysinuric protein intolerance exacerbates intravascular coagulation. Metabolism48, 1136–1140 (1999). ArticleCASPubMed Google Scholar
Hillmen, P., Lewis, S.M., Bessler, M., Luzzatto, L. & Dacie, J.V. Natural history of paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med.333, 1253–1258 (1995). ArticleCASPubMed Google Scholar
Socie, G. et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet348, 573–577 (1996). ArticleCASPubMed Google Scholar
Moyo, V.M., Mukhina, G.L., Garrett, E.S. & Brodsky, R.A. Natural history of paroxysmal nocturnal haemoglobinuria using modern diagnostic assays. Br. J. Haematol.126, 133–138 (2004). ArticleCASPubMed Google Scholar
Araten, D.J., Thaler, H.T. & Luzzatto, L. High incidence of thrombosis in African-American and Latin-American patients with paroxysmal nocturnal haemoglobinuria. Thromb. Haemost.93, 88–91 (2005). ArticleCASPubMed Google Scholar
Nishimura, J. et al. Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine (Baltimore)83, 193–207 (2004). Article Google Scholar
Hill, A. et al. High definition contrast-enhanced MR imaging in paroxysmal nocturnal hemoglobinuria (PNH) suggests a high frequency of subclinical thrombosis. Blood108, 979 (2006). ArticleCAS Google Scholar
Rother, R.P. et al. Expression of recombinant transmembrane CD59 in paroxysmal nocturnal hemoglobinuria B cells confers resistance to human complement. Blood84, 2604–2611 (1994). CASPubMed Google Scholar
Nishimura, J. et al. Efficient retrovirus-mediated PIG-A gene transfer and stable restoration of GPI-anchored protein expression in cells with PNH phenotype. Blood97, 3004–3010 (2001). ArticleCAS Google Scholar
Yonemura, Y. et al. Paroxysmal nocturnal haemoglobinuria with coexisting deficiency of the ninth component of complement: lack of massive haemolytic attack. Br. J. Haematol.74, 108–113 (1990). ArticleCASPubMed Google Scholar
Hillmen, P. et al. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med.350, 552–559 (2004). ArticleCASPubMed Google Scholar
Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med.355, 1233–1243 (2006). ArticleCASPubMed Google Scholar
Schrezenmeier, H. et al. Safety and efficacy of the terminal complement inhibitor eculizumab in patients with paroxysmal nocturnal hemoglobinuria: SHEPHERD phase III clinical study results. Haematologica92, 1696 (2007). Google Scholar
Muus, P. et al. The clinical benefit of eculizumab is demonstrable in all subpopulations of patients with paroxysmal nocturnal hemoglobinuria (PNH) with hemolysis. Haematologica92, 379 (2007). Google Scholar
Hillmen, P. et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood, published online 16 August 2007 (doi 10.1182/blood-2007-1106-095646).
Wang, H. et al. Prevention of acute vascular rejection by a functionally blocking anti-C5 monoclonal antibody combined with cyclosporine. Transplantation79, 1121–1127 (2005). ArticleCASPubMed Google Scholar
Biesecker, G. & Gomez, C.M. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol.142, 2654–2659 (1989). CASPubMed Google Scholar
Christadoss, P. C5 gene influences the development of murine myasthenia gravis. J. Immunol.140, 2589–2592 (1988). CASPubMed Google Scholar
Morgan, B.P. et al. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin. Exp. Immunol.146, 294–302 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sawant-Mane, S., Clark, M.B. & Koski, C.L. In vitro demyelination by serum antibody from patients with Guillain-Barre syndrome requires terminal complement complexes. Ann. Neurol.29, 397–404 (1991). ArticleCASPubMed Google Scholar
Willison, H.J. Basic and clinical aspects of autoimmune disorders in peripheral nerves. Acta Neurol. Scand. Suppl.183, 14–18 (2006). ArticleCASPubMed Google Scholar
Girardi, G. et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest.112, 1644–1654 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ritis, K. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol.177, 4794–4802 (2006). ArticleCASPubMed Google Scholar
Keegan, M. et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet366, 579–582 (2005). ArticlePubMed Google Scholar
Peng, T. et al. Role of C5 in the development of airway inflammation, airway hyperresponsiveness, and ongoing airway response. J. Clin. Invest.115, 1590–1600 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nozaki, M. et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl. Acad. Sci. USA103, 2328–2333 (2006). ArticleCASPubMedPubMed Central Google Scholar