Fluorogen-activating single-chain antibodies for imaging cell surface proteins (original) (raw)

References

  1. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
    Article CAS Google Scholar
  2. Yao, J., Munson, K.M., Webb, W.W. & Lis, J.T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).
    Article CAS Google Scholar
  3. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
    Article CAS Google Scholar
  4. Pertz, O., Hodgson, L., Klemke, R.L. & Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).
    Article CAS Google Scholar
  5. Marks, K.M. & Nolan, G.P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006).
    Article CAS Google Scholar
  6. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).
    Article CAS Google Scholar
  7. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).
    Article CAS Google Scholar
  8. Rozinov, M.N. & Nolan, G.P. Evolution of peptides that modulate the spectral qualities of bound, small-molecule fluorophores. Chem. Biol. 5, 713–728 (1998).
    Article CAS Google Scholar
  9. Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).
    Article CAS Google Scholar
  10. Hauser, C.T. & Tsien, R.Y. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc. Natl. Acad. Sci. USA 104, 3693–3697 (2007).
    Article CAS Google Scholar
  11. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
    Article CAS Google Scholar
  12. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).
    Article CAS Google Scholar
  13. Reck-Peterson, S.L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).
    Article CAS Google Scholar
  14. Feldhaus, M.J. et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170 (2003).
    Article CAS Google Scholar
  15. Nygren, J., Svanvik, N. & Kubista, M. The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46, 39–51 (1998).
    Article CAS Google Scholar
  16. Babendure, J.R., Adams, S.R. & Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).
    Article CAS Google Scholar
  17. Iwaki, T., Torigoe, C., Noji, M. & Nakanishi, M. Antibodies for fluorescent molecular rotors. Biochemistry 32, 7589–7592 (1993).
    Article CAS Google Scholar
  18. Siegel, R.W., Coleman, J.R., Miller, K.D. & Feldhaus, M.J. High efficiency recovery and epitope-specific sorting of an scFv yeast display library. J. Immunol. Methods 286, 141–153 (2004).
    Article CAS Google Scholar
  19. Giudicelli, V. et al. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 34, D781–D784 (2006).
    Article CAS Google Scholar
  20. Colby, D.W. et al. Engineering antibody affinity by yeast surface display. Methods Enzymol. 388, 348–358 (2004).
    Article CAS Google Scholar
  21. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).
    Article CAS Google Scholar
  22. Simeonov, A. et al. Blue-fluorescent antibodies. Science 290, 307–313 (2000).
    Article CAS Google Scholar
  23. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
    Article CAS Google Scholar
  24. Huang, D. & Shusta, E.V. Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae. Biotechnol. Prog. 21, 349–357 (2005).
    Article CAS Google Scholar
  25. Baptista, M.S. & Indig, G.L. Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J. Phys. Chem. B 102, 4678–4688 (1998).
    Article CAS Google Scholar
  26. Surrey, T. et al. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl. Acad. Sci. USA 95, 4293–4298 (1998).
    Article CAS Google Scholar
  27. Remington, S.J. Fluorescent proteins: maturation, photochemistry and photophysics. Curr. Opin. Struct. Biol. 16, 714–721 (2006).
    Article CAS Google Scholar
  28. Colby, D.W. et al. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 342, 901–912 (2004).
    Article CAS Google Scholar
  29. Tanaka, T., Lobato, M.N. & Rabbitts, T.H. Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J. Mol. Biol. 331, 1109–1120 (2003).
    Article CAS Google Scholar
  30. Proba, K., Worn, A., Honegger, A. & Pluckthun, A. Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol. 275, 245–253 (1998).
    Article CAS Google Scholar
  31. Motulsky, H. & Christopoulos, A. . Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. (Oxford University Press, Oxford; New York, 2004).
  32. Kubin, R.F. & Fletcher, A.N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455–462 (1982).
    Article Google Scholar
  33. Lacowicz, J. Principles of Fluorescence Spectroscopy edn 2. (Kluwer Academic/Plenum, London, 1999).
  34. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J. & Waggoner, A.S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105–111 (1993).
    Article CAS Google Scholar
  35. Sims, P.J., Waggoner, A.S., Wang, C.H. & Hoffman, J.F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13, 3315–3330 (1974).
    Article CAS Google Scholar
  36. Mueller, W.H.I., Schuetz, H.J. & Meyer, G. Polyethylene glycol derivatives of base and sequence specific DNA ligands: DNA interaction and application for base specific separation of DNA fragments by gel electrophoresis. Nucleic Acids Res. 95, 95–119 (1981).
    Article Google Scholar

Download references