Arkowitz, R.A. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol.9, 20–27 (1999). ArticleCASPubMed Google Scholar
Firtel, R.A. & Chung, C.Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays22, 603–615 (2000). ArticleCASPubMed Google Scholar
Devreotes, P.N. & Zigmond, S.H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol.4, 649–686 (1988). ArticleCASPubMed Google Scholar
Brownlee, C. & Bouget, F.Y. Polarity determination in Fucus: from zygote to multicellular embryo. Semin. Cell Dev. Biol.9, 179–185 (1998). ArticleCASPubMed Google Scholar
Robinson, K.R., Wozniak, M., Pu, R. & Messerli, M. Symmetry breaking in the zygotes of the fucoid algae: controversies and recent progress. Curr. Top. Dev. Biol.44, 101–125 (1999). ArticleCASPubMed Google Scholar
Hable, W.E. & Kropf, D.L. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev. Biol.198, 45–56 (1998). CASPubMed Google Scholar
Vincent, J.P., Oster, G.F. & Gerhart, J.C. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol.113, 484–500 (1986). ArticleCASPubMed Google Scholar
Gerhart, J. et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development107, 37–51 (1989). PubMed Google Scholar
Casamayor, A. & Snyder, M. Bud-site selection and cell polarity in budding yeast. Curr. Opin. Microbiol.5, 179–186 (2002). ArticleCASPubMed Google Scholar
Park, H.O., Kang, P.J. & Rachfal, A.W. Localization of the Rsr1/Bud1 GTPase involved in selection of a proper growth site in yeast. J. Biol. Chem.277, 26721–26724 (2002). ArticleCASPubMed Google Scholar
Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci.113, 365–375 (2000). CASPubMed Google Scholar
Johnson, D.I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev.63, 54–105 (1999). CASPubMedPubMed Central Google Scholar
Chant, J. & Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell65, 1203–1212 (1991). ArticleCASPubMed Google Scholar
Gulli, M.P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell6, 1155–1167 (2000). ArticleCASPubMed Google Scholar
Lechler, T., Jonsdottir, G.A., Klee, S.K., Pellman, D. & Li, R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol.155, 261–270 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science299, 1231–1235 (2003). ArticleCASPubMed Google Scholar
Seeley, T.D. When is self-organization used in biological systems? Biol. Bull.202, 314–318 (2002). ArticlePubMed Google Scholar
Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. Bioessays22, 753–760 (2000). ArticleCASPubMed Google Scholar
Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik12, 30–39 (1972). ArticleCASPubMed Google Scholar
Niggli, V. A membrane-permeant ester of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is an activator of human neutrophil migration. FEBS Lett.473, 217–221 (2000). ArticleCASPubMed Google Scholar
Weiner, O.D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol.4, 509–513 (2002). ArticleCASPubMed Google Scholar
Bourne, H.R. & Weiner, O. Cell polarity: A chemical compass. Nature419, 21 (2002).
Weiner, O.D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol.14, 196–202 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol.4, 513–518 (2002). ArticleCASPubMed Google Scholar
Comer, F.I. & Parent, C.A. PI 3-kinases and PTEN: how opposites chemoattract. Cell109, 541–544 (2002). ArticleCASPubMed Google Scholar
Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science297, 612–615 (2002). ArticleCASPubMed Google Scholar
Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol.4, 626–631 (2002). ArticleCASPubMed Google Scholar
Pu, R., Wozniak, M. & Robinson, K.R. Cortical actin filaments form rapidly during photopolarization and are required for the development of calcium gradients in Pelvetia compressa zygotes. Dev. Biol.222, 440–449 (2000). ArticleCASPubMed Google Scholar
Thompson, C.R. & Bretscher, M.S. Cell polarity and locomotion, as well as endocytosis, depend on NSF. Development129, 4185–4192 (2002). CASPubMed Google Scholar
Houliston, E. & Elinson, R.P. Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs. Development112, 107–117 (1991). CASPubMed Google Scholar
Houliston, E. & Elinson, R.P. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs. J. Cell Biol.114, 1017–1028 (1991). ArticleCASPubMed Google Scholar
Larabell, C.A., Rowning, B.A., Wells, J., Wu, M. & Gerhart, J.C. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development122, 1281–1289 (1996). CASPubMed Google Scholar
Nedelec, F.J., Surrey, T., Maggs, A.C. & Leibler, S. Self-organization of microtubules and motors. Nature389, 305–308 (1997). ArticleCASPubMed Google Scholar
Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science292, 1167–1171 (2001). ArticleCASPubMed Google Scholar
Miller, J.R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol.146, 427–437 (1999). ArticleCASPubMedPubMed Central Google Scholar
Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci.112, 2867–2874 (1999). CASPubMed Google Scholar