Polar expeditions — provisioning the centrosome for mitosis (original) (raw)

References

  1. Flemming, W. Studien über die Entwicklungsgeschichte der Najaden. Sitzungsber Akad Wissensch Wien. 71, 81–147 (1875).
    Google Scholar
  2. Boveri, T. Zellenstudien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena Zeit. Naturw. 22, 685–882 (1888).
    Google Scholar
  3. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).
    CAS PubMed Google Scholar
  4. Piel, M., Meyer, P., Khodjakov, A., Rieder, C.L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behaviour in vertebrate cells. J. Cell Biol. 149, 317–330 (2000).
    CAS PubMed PubMed Central Google Scholar
  5. Dutcher, S.K. & Trabuco, E.C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).
    CAS PubMed PubMed Central Google Scholar
  6. Dutcher, S.K. Motile organelles: the importance of specific tubulin isoforms. Curr. Biol. 11, R419–R422 (2001).
    CAS PubMed Google Scholar
  7. Dutcher, S.K., Morrissette, N.S., Preble, A.M., Rackley, C. & Stanga, J. ε-tubulin is an essential component of the centriole. Mol. Biol. Cell 13, 3859–3869 (2002).
    CAS PubMed PubMed Central Google Scholar
  8. Chang, P., Giddings, T.H., Winey, M. & Stearns, T. Varε-Tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol. 5, 71–76 (2003).
    CAS PubMed Google Scholar
  9. Salisbury, J.L. Centrin, centrosomes, and mitotic spindle poles. Curr. Opin. Cell Biol. 7, 39–45 (1995).
    CAS PubMed Google Scholar
  10. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J.L & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109, 3089–3102 (1996).
    CAS PubMed Google Scholar
  11. Ruiz-Binder, N.E., Geimer, S. & Melkonian, M. In vivo localization of centrin in the green alga Chlamydomonas reinhardtii. Cell. Motil. Cytoskeleton 52, 43–55 (2002).
    CAS PubMed Google Scholar
  12. Lutz, W., Lingle, W.L., McCormick, D., Greenwood, T.M. & Salisbury, J.L. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J. Biol. Chem. 276, 20774–20780 (2001).
    CAS PubMed Google Scholar
  13. Salisbury, J.L., Suino, K.M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 (2002).
    CAS PubMed Google Scholar
  14. Moritz, M. & Agard, D.A. γ-tubulin complexes and microtubule nucleation. Curr. Opin. Struct. Biol. 11, 174–181 (2001).
    CAS PubMed Google Scholar
  15. Job, D., Valiron, O. & Oakley, B. Microtubule nucleation. Curr. Opin. Cell Biol. 15, 111–117 (2003).
    CAS PubMed Google Scholar
  16. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985–6995 (1997).
    CAS PubMed PubMed Central Google Scholar
  17. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).
    CAS PubMed PubMed Central Google Scholar
  18. Murphy, S.M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).
    CAS PubMed PubMed Central Google Scholar
  19. Paluh, J.L. et al. A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol. Biol. Cell 11, 1225–1239 (2000).
    CAS PubMed PubMed Central Google Scholar
  20. Prigozhina, N.L., Walker, R.A., Oakley. C.E. & Oakley, B.R. γ-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in _Aspergillus nidulan_s. Mol. Biol. Cell 12, 3161–3174 (2001).
    CAS PubMed PubMed Central Google Scholar
  21. Vogel, J. & Snyder, M. γ-Tubulin of budding yeast. Curr. Top. Dev. Biol. 49, 75–104 (2000).
    CAS PubMed Google Scholar
  22. Vogel, J. & Snyder, M. The carboxy terminus of Tub4p is required for γ-tubulin function in budding yeast. J. Cell Sci. 113, 3871–3882 (2000).
    CAS PubMed Google Scholar
  23. Sampaio, P., Rebollo, E., Varmark, H., Sunkel, C.E & Gonzalez, C. Organized microtubule arrays in γ-tubulin-depleted Drosophila spermatocytes. Curr. Biol. 11, 1788–1793 (2001).
    CAS PubMed Google Scholar
  24. Barbosa, V., Gatt, M., Rebollo, E., Gonzalez, C. & Glover, D.M. Drosophila dd4 mutants reveal that γTuRC is required to maintain juxtaposed half spindles in spermatocytes. J. Cell Sci. 116, 929–941 (2003).
    CAS PubMed Google Scholar
  25. Hendrickson, T.W., Yao, J., Bhadury, S., Corbett, A.H. & Joshi, H.C. Conditional mutations in γ-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell 12, 2469–2481 (2001).
    CAS PubMed PubMed Central Google Scholar
  26. Vardy, L. & Toda, T. The fission yeast γ-tubulin complex is required in G(1) phase and is a component of the spindle assembly checkpoint. EMBO J. 19, 6098–6111 (2000).
    CAS PubMed PubMed Central Google Scholar
  27. Vardy, L. Fujita, A. & Toda, T. The γ-tubulin complex protein Alp4 provides a link between the metaphase checkpoint and cytokinesis in fission yeast. Genes Cells 73, 65–73 (2002).
    Google Scholar
  28. Dictenberg, J.B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–74 (1998).
    CAS PubMed PubMed Central Google Scholar
  29. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).
    CAS PubMed PubMed Central Google Scholar
  30. Gillingham, A.K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000).
    CAS PubMed PubMed Central Google Scholar
  31. Takahashi, M. et al. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus J. Biol. Chem. 274, 17267–17274 (1999).
    CAS PubMed Google Scholar
  32. Takahashi, M., Mukai, H., Oishi, K., Isagawa, T. & Ono, Y. Association of immature hypophosphorylated protein kinase c-ε with an anchoring protein CG-NAP. J. Biol. Chem. 275, 34592–34596 (2000).
    CAS PubMed Google Scholar
  33. Diviani, D., Langeberg, L.K., Doxsey, S.J. & Scott, J.D. Pericentrin anchors protein kinase A at the centrosome through newly identified RII-binding domain. Curr. Biol. 10, 417–420 (2000).
    CAS PubMed Google Scholar
  34. Li, Q. et al. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J. Cell Sci. 114, 797–809 (2001).
    CAS PubMed Google Scholar
  35. Hinchcliffe, E.H. & Sluder, G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).
    CAS PubMed Google Scholar
  36. Lange, B.M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919–927 (1995).
    CAS PubMed Google Scholar
  37. Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, S. & Tsukita, S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687–1697 (2001).
    CAS PubMed PubMed Central Google Scholar
  38. Fry, A.M. et al. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. J. Cell Biol. 141, 1563–1574 (1998).
    CAS PubMed PubMed Central Google Scholar
  39. Mayor, T., Stierhof, Y.D., Tanaka, K., Fry, A.M. & Nigg, E.A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).
    CAS PubMed PubMed Central Google Scholar
  40. Marshall, W.F. & Rosenbaum, J.L. Are there nucleic acids in the centrosome? Curr. Top. Dev. Biol. 49, 187–205 (2000).
    CAS PubMed Google Scholar
  41. Anderson, R.G. & Brenner, R.M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J. Cell Biol. 50, 10–34 (1971).
    CAS PubMed PubMed Central Google Scholar
  42. Szollosi, D., Calarco, P. & Donahue, R.P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972).
    CAS PubMed Google Scholar
  43. Marshall, W.F., Vucica, Y. & Rosenbaum, J.L. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol. 11, 308–317 (2001).
    CAS PubMed Google Scholar
  44. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).
    CAS PubMed PubMed Central Google Scholar
  45. Maniotis, A. & Schliwa, M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67, 495–504 (1991).
    CAS PubMed Google Scholar
  46. Khodjakov, A., Cole, R.W., Oakley, B.R. & Rieder, C.L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).
    CAS PubMed Google Scholar
  47. Khodjakov, A. & Rieder, C.L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).
    CAS PubMed PubMed Central Google Scholar
  48. Khodjakov, A. et al. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181 (2002).
    CAS PubMed PubMed Central Google Scholar
  49. Zimmerman, W. & Doxsey, S.J. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 1, 927–934 (2000).
    CAS PubMed Google Scholar
  50. Young, A., Dictenberg, J.B., Purohit, A., Tuft, R. & Doxsey, S.J. Cytoplasmic dynein-mediated assembly of pericentrin and γ-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000).
    CAS PubMed PubMed Central Google Scholar
  51. Khodjakov, A. & Rieder, C. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).
    CAS PubMed PubMed Central Google Scholar
  52. Quintyne, N.J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).
    CAS PubMed PubMed Central Google Scholar
  53. Quintyne, N.J. & Schroer, T.A. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159, 245–254 (2002).
    CAS PubMed PubMed Central Google Scholar
  54. Balczon, R., Varden, C.E. & Schroer, T.A. Role for microtubules in centrosome doubling in Chinese hamster ovary cells. Cell Motil. Cytoskeleton 42, 60–72 (1999).
    CAS PubMed Google Scholar
  55. Kubo, A., Sasaki, H., Yuba-Kubo, A., Tsukita, S. & Shiina, N. Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969–980 (1999).
    CAS PubMed PubMed Central Google Scholar
  56. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).
    CAS PubMed PubMed Central Google Scholar
  57. Keating, T.J. et al. Microtubule release from the centrosome. Proc. Natl Acad. Sci. USA 94, 5078–5083 (1997).
    CAS PubMed PubMed Central Google Scholar
  58. Dasso, M. The Ran GTPase: theme and variations. Curr. Biol. 12, R502–R508 (2002).
    CAS PubMed Google Scholar
  59. Trieselmann, N. & Wilde, A. Ran localises around the microtubule spindle in vivo during mitosis in Drosophila embryos. Curr. Biol. 12, 1124–1129 (2002).
    CAS PubMed Google Scholar
  60. Moore, W., Zhang, C. & Clarke, P.R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442–1447 (2002).
    CAS PubMed Google Scholar
  61. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).
    CAS PubMed Google Scholar
  62. Merdes, A., Ramyar, K., Vechio, J.D. & Cleveland, D.W. A complex of NuMa and cytoplasmic dynein is essential for spindle assembly. Cell 87, 447–458 (1996).
    CAS PubMed Google Scholar
  63. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).
    CAS PubMed PubMed Central Google Scholar
  64. Garrett, S., Auer, K., Compton, D.A. & Kapoor, T.M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol. 12, 2055–2059 (2002).
    CAS PubMed Google Scholar
  65. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel Xenopus MAP involved in spindle pole organisation. J. Cell Biol. 149, 1405–1418 (2000).
    CAS PubMed PubMed Central Google Scholar
  66. Ripoll, P., Pimpinelli, S., Valdivia, M.M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907–912 (1985).
    CAS PubMed Google Scholar
  67. Saunders, R.D., Avides, M.C., Howard, T., Gonzalez, C. & Glover, D.M. The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J. Cell Biol. 137, 881–890 (1997).
    CAS PubMed PubMed Central Google Scholar
  68. do Carmo Avides, M. & Glover, D.M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).
    CAS PubMed Google Scholar
  69. Moritz, M., Zheng, Y., Alberts, B.M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775–786 (1998).
    CAS PubMed PubMed Central Google Scholar
  70. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).
    CAS PubMed Google Scholar
  71. Jackman, M., Lindon, C., Nigg, E.A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nature Cell Biol. 5, 143–148 (2003).
    CAS PubMed Google Scholar
  72. Kumagai, A. & Dunphy, W.G. Purification and molecular cloning of Plx1, a cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996).
    CAS PubMed Google Scholar
  73. Sunkel, C.E. & Glover, D.M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25–38 (1988).
    PubMed Google Scholar
  74. Barbosa, V., Yamamoto, R.R., Henderson, D.S. & Glover, D.M. Mutation of a Drosophila γ-tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization. Genes Dev. 14, 3126–3139 (2000).
    CAS PubMed PubMed Central Google Scholar
  75. Donaldson, M.M., Tavrea, A.A.M., Ohkura, H., Deak, P. & Glover, D. Metaphase arrest with centromere separation in polo mutants of Drosophila. J. Cell Biol. 153, 663–675 (2001).
    CAS PubMed PubMed Central Google Scholar
  76. Lane, H.A. & Nigg, E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).
    CAS PubMed Google Scholar
  77. do Carmo Avides, M., Tavares, A. & Glover, D.M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).
    CAS PubMed Google Scholar
  78. de Carcer, G., do Carmo Avides, M., Lallena, M.J., Glover, D.M. & González, C. Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J. 20, 2878–2884 (2001).
    CAS PubMed PubMed Central Google Scholar
  79. Simizu, S. & Osada, H. Mutations in the plk gene lead to instability of Plk protein in human tumour cell lines. Nature Cell Biol. 2, 852–854 (2000).
    CAS PubMed Google Scholar
  80. Lange, B.M., Bachi, A., Wilm, M. & González, C. Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262 (2000).
    CAS PubMed PubMed Central Google Scholar
  81. Glover, D.M., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).
    CAS PubMed Google Scholar
  82. Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).
    CAS PubMed PubMed Central Google Scholar
  83. Heald, R. Motor function in the mitotic spindle. Cell 102, 399–402 (2000).
    CAS PubMed Google Scholar
  84. Berdnik, D. & Knoblich, J.A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol. 12, 640–647 (2002).
    CAS PubMed Google Scholar
  85. Cullen, C.F., Deak, P., Glover, D.M. & Ohkura, H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).
    CAS PubMed PubMed Central Google Scholar
  86. Lee, M.J., Gergely, F., Jeffers, K., Peak-Chew, S.Y. & Raff, J.W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biol. 3, 643–649 (2001).
    CAS PubMed Google Scholar
  87. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J.G. & Raff, J.W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo EMBO J. 19, 241–252 (2000).
    CAS PubMed PubMed Central Google Scholar
  88. Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).
    CAS PubMed PubMed Central Google Scholar
  89. Hamill, D.R., Severson, A.F., Carter, J.C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).
    CAS PubMed Google Scholar
  90. Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem. 276, 46219–46224 (2001).
    CAS PubMed Google Scholar
  91. Sumiyoshi, E., Sugimoto, A. & Yamamoto, M. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J. Cell Sci. 115, 1403–1410 (2002).
    CAS PubMed Google Scholar
  92. Kufer, T.A. et al. TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623 (2002).
    CAS PubMed PubMed Central Google Scholar
  93. Tsai, M.Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol. 5, 242–248 (2003).
    CAS PubMed Google Scholar
  94. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).
    CAS PubMed Google Scholar
  95. Carmena, M. et al. Drosophila polo kinase is required for cytokinesis. J. Cell Biol. 143, 659–671 (1998).
    CAS PubMed PubMed Central Google Scholar
  96. Riparbelli, M.G., Callaini, G., Glover, D.M. & Avides, M. do C. A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila. J. Cell Sci. 115, 913–922 (2002).
    CAS PubMed Google Scholar

Download references