The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila (original) (raw)
References
Williamson, A. & Lehmann, R. Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol.12, 365–391 (1996). ArticleCAS Google Scholar
Dobens, L.L. & Raftery, L.A. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn.218, 80–93 (2000). ArticleCAS Google Scholar
Lin, H. The stem-cell niche theory: lessons from flies. Nature Rev. Genet.3, 931–940 (2002). ArticleCAS Google Scholar
Lopez-Schier, H. The polarisation of the anteroposterior axis in Drosophila. Bioessays25, 781–791 (2003). Article Google Scholar
Schüpbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics129, 1119–1136 (1991). PubMedPubMed Central Google Scholar
Lehmann, R. & Nüsslein-Volhard, C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell47, 141–152 (1986). ArticleCAS Google Scholar
Margolis, J. & Spradling, A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development121, 3797–3807 (1995). CASPubMed Google Scholar
Kataoka, K., Nishizawa, M. & Kawai, S. Structure–function analysis of the maf oncogene product, a member of the b-Zip protein family. J. Virol.67, 2133–2141 (1993). CASPubMedPubMed Central Google Scholar
Blank, V. & Andrews, N.C. The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci.22, 437–441 (1997). ArticleCAS Google Scholar
Kerppola, T.K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf–Nrl family proteins. Oncogene9, 3149–3158 (1994). CASPubMed Google Scholar
Dlakic, M., Grinberg, A.V., Leonard, D.A. & Kerppola, T.K. DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins. EMBO J.20, 828–840 (2001). ArticleCAS Google Scholar
Kurschner, C. & Morgan, J.I. The maf proto-oncogene stimulates transcription from multiple sites in a promoter that directs Purkinje neuron-specific gene expression. Mol. Cell Biol.15, 246–254 (1995). ArticleCAS Google Scholar
Veraksa, A., McGinnis, N., Li, X., Mohler, J. & McGinnis, W. Cap 'n' collar B cooperates with a small Maf subunit to specify pharyngeal development and suppress deformed homeotic function in the Drosophila head. Development127, 4023–4037 (2000). CASPubMed Google Scholar
Starz-Gaiano, M. & Lehmann R. Moving towards the next generation. Mech. Dev.105, 5–18 (2001). ArticleCAS Google Scholar
King, R.C. Ovarian development in Drosophila melanogaster (Academic, New York, 1970). Google Scholar
Godt, D. & Laski, F.A. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development121, 173–187 (1995). CASPubMed Google Scholar
Tepass, U., Godt. D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev.12, 572–582 (2002). ArticleCAS Google Scholar
Brower, D.L., Smith, R.J. & Wilcox, M. Differentiation within the gonads of Drosophila revealed by immunofluorescence. J. Embryol. Exp. Morphol.63, 233–242 (1981). CASPubMed Google Scholar
Niewiadomska, P., Godt, D. & Tepass, U. DE–Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol.144, 533–547 (1999). ArticleCAS Google Scholar
Barthalay, Y., Hipeau-Jacquotte, R., de la Escalera, S., Jimenez, F. & Piovant, M. Drosophila Neurotactin mediates heterophilic cell adhesion. EMBO J.9, 3603–3609 (1990). ArticleCAS Google Scholar
Steinberg, M.S. Adhesion in development: an historical overview. Dev. Biol.180, 377–388 (1996). ArticleCAS Google Scholar
Elkins, T., Hortsch, M., Bieber, A.J., Snow, P.M. & Goodman, C.S. Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J. Cell Biol.110, 1825–1832 (1990). ArticleCAS Google Scholar
Chiba, A., Snow, P., Keshishian, H. & Hotta, Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature374, 166–168 (1995). ArticleCAS Google Scholar
Godt, D. & Tepass, U. Organogenesis: keeping in touch with the germ cells. Curr. Biol.13, R683–R685 (2003). ArticleCAS Google Scholar
Jenkins, A.B., McCaffery, J.M. & Van Doren, M. Drosophila E-cadherin is essential for proper germ cell–soma interaction during gonad morphogenesis. Development130, 4417–4426 (2003). ArticleCAS Google Scholar
Cooke, J. et al. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development128, 571–580 (2001). CASPubMed Google Scholar
Sadl, V. et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev. Biol.249, 16–29 (2002). ArticleCAS Google Scholar
Campos-Ortega, J.A. & Hartenstein, V. The embryonic development of Drosophila melanogaster 2nd edn (Springer-Verlag Berlin, Heidelberg, New York, 1997). Book Google Scholar
Powers, P.A. & Ganetzky, B. On the components of segregation distortion in Drosophila melanogaster. V. Molecular analysis of the Sd locus. Genetics129, 133–144 (1991). CASPubMedPubMed Central Google Scholar
Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev. Biol.165, 716–726 (1994). ArticleCAS Google Scholar
Iwai, Y. et al. Axon patterning requires DN–cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron19, 77–89 (1997). ArticleCAS Google Scholar
Lasko, P.F. & Ashburner, M. Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev.4, 905–921 (1990). ArticleCAS Google Scholar