The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila (original) (raw)

References

  1. Williamson, A. & Lehmann, R. Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12, 365–391 (1996).
    Article CAS Google Scholar
  2. Dobens, L.L. & Raftery, L.A. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 218, 80–93 (2000).
    Article CAS Google Scholar
  3. Lin, H. The stem-cell niche theory: lessons from flies. Nature Rev. Genet. 3, 931–940 (2002).
    Article CAS Google Scholar
  4. Lopez-Schier, H. The polarisation of the anteroposterior axis in Drosophila. Bioessays 25, 781–791 (2003).
    Article Google Scholar
  5. Schüpbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).
    PubMed PubMed Central Google Scholar
  6. Lehmann, R. & Nüsslein-Volhard, C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47, 141–152 (1986).
    Article CAS Google Scholar
  7. Margolis, J. & Spradling, A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995).
    CAS PubMed Google Scholar
  8. Kataoka, K., Nishizawa, M. & Kawai, S. Structure–function analysis of the maf oncogene product, a member of the b-Zip protein family. J. Virol. 67, 2133–2141 (1993).
    CAS PubMed PubMed Central Google Scholar
  9. Blank, V. & Andrews, N.C. The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437–441 (1997).
    Article CAS Google Scholar
  10. Kerppola, T.K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf–Nrl family proteins. Oncogene 9, 3149–3158 (1994).
    CAS PubMed Google Scholar
  11. Dlakic, M., Grinberg, A.V., Leonard, D.A. & Kerppola, T.K. DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins. EMBO J. 20, 828–840 (2001).
    Article CAS Google Scholar
  12. Kurschner, C. & Morgan, J.I. The maf proto-oncogene stimulates transcription from multiple sites in a promoter that directs Purkinje neuron-specific gene expression. Mol. Cell Biol. 15, 246–254 (1995).
    Article CAS Google Scholar
  13. Veraksa, A., McGinnis, N., Li, X., Mohler, J. & McGinnis, W. Cap 'n' collar B cooperates with a small Maf subunit to specify pharyngeal development and suppress deformed homeotic function in the Drosophila head. Development 127, 4023–4037 (2000).
    CAS PubMed Google Scholar
  14. Starz-Gaiano, M. & Lehmann R. Moving towards the next generation. Mech. Dev. 105, 5–18 (2001).
    Article CAS Google Scholar
  15. King, R.C. Ovarian development in Drosophila melanogaster (Academic, New York, 1970).
    Google Scholar
  16. Godt, D. & Laski, F.A. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development 121, 173–187 (1995).
    CAS PubMed Google Scholar
  17. Tepass, U., Godt. D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).
    Article CAS Google Scholar
  18. Brower, D.L., Smith, R.J. & Wilcox, M. Differentiation within the gonads of Drosophila revealed by immunofluorescence. J. Embryol. Exp. Morphol. 63, 233–242 (1981).
    CAS PubMed Google Scholar
  19. Niewiadomska, P., Godt, D. & Tepass, U. DE–Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).
    Article CAS Google Scholar
  20. Barthalay, Y., Hipeau-Jacquotte, R., de la Escalera, S., Jimenez, F. & Piovant, M. Drosophila Neurotactin mediates heterophilic cell adhesion. EMBO J. 9, 3603–3609 (1990).
    Article CAS Google Scholar
  21. Steinberg, M.S. Adhesion in development: an historical overview. Dev. Biol. 180, 377–388 (1996).
    Article CAS Google Scholar
  22. Elkins, T., Hortsch, M., Bieber, A.J., Snow, P.M. & Goodman, C.S. Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J. Cell Biol. 110, 1825–1832 (1990).
    Article CAS Google Scholar
  23. Chiba, A., Snow, P., Keshishian, H. & Hotta, Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature 374, 166–168 (1995).
    Article CAS Google Scholar
  24. Godt, D. & Tepass, U. Organogenesis: keeping in touch with the germ cells. Curr. Biol. 13, R683–R685 (2003).
    Article CAS Google Scholar
  25. Jenkins, A.B., McCaffery, J.M. & Van Doren, M. Drosophila E-cadherin is essential for proper germ cell–soma interaction during gonad morphogenesis. Development 130, 4417–4426 (2003).
    Article CAS Google Scholar
  26. Cooke, J. et al. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development 128, 571–580 (2001).
    CAS PubMed Google Scholar
  27. Sadl, V. et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev. Biol. 249, 16–29 (2002).
    Article CAS Google Scholar
  28. Campos-Ortega, J.A. & Hartenstein, V. The embryonic development of Drosophila melanogaster 2nd edn (Springer-Verlag Berlin, Heidelberg, New York, 1997).
    Book Google Scholar
  29. Powers, P.A. & Ganetzky, B. On the components of segregation distortion in Drosophila melanogaster. V. Molecular analysis of the Sd locus. Genetics 129, 133–144 (1991).
    CAS PubMed PubMed Central Google Scholar
  30. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev. Biol. 165, 716–726 (1994).
    Article CAS Google Scholar
  31. Iwai, Y. et al. Axon patterning requires DN–cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).
    Article CAS Google Scholar
  32. Lasko, P.F. & Ashburner, M. Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 4, 905–921 (1990).
    Article CAS Google Scholar

Download references