Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables (original) (raw)

References

  1. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).
    Article CAS Google Scholar
  2. Mullins, R.D., Stafford, W.F. & Pollard, T.D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136, 331–343 (1997).
    Article CAS Google Scholar
  3. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A. & Mitchison, T.J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).
    Article CAS Google Scholar
  4. Winter, D.C., Choe, E.Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).
    Article CAS Google Scholar
  5. Welch, M.D. & Mullins, R.D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002).
    Article CAS Google Scholar
  6. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).
    Article CAS Google Scholar
  7. Sagot, I., Klee, S.K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).
    Article CAS Google Scholar
  8. Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002).
    Article CAS Google Scholar
  9. Evangelista, M., Pruyne, D., Amberg, D.C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).
    Article CAS Google Scholar
  10. Kovar, D.R., Kuhn, J.R., Tichy, A.L. & Pollard, T.D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).
    Article CAS Google Scholar
  11. Li, F. & Higgs, H.N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).
    Article CAS Google Scholar
  12. Chan, D.C., Wynshaw-Boris, A. & Leder, P. Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 121, 3151–3162 (1995).
    CAS PubMed Google Scholar
  13. Zuniga, A. & Zeller, R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126, 13–21 (1999).
    CAS PubMed Google Scholar
  14. Lee, L., Klee, S.K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).
    Article CAS Google Scholar
  15. Heil-Chapdelaine, R.A., Adames, N.R. & Cooper, J.A. Formin' the connection between microtubules and the cell cortex. J. Cell Biol. 144, 809–811 (1999).
    Article CAS Google Scholar
  16. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).
    Article CAS Google Scholar
  17. Tolliday, N., VerPlank, L. & Li, R. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12, 1864–1870 (2002).
    Article CAS Google Scholar
  18. Geneste, O., Copeland, J.W. & Treisman, R. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157, 831–838 (2002).
    Article CAS Google Scholar
  19. Lew, D.J. Formin' actin filament bundles. Nature Cell Biol. 4, E29–E30 (2002).
    Article CAS Google Scholar
  20. Wallar, B.J. & Alberts, A.S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003).
    Article CAS Google Scholar
  21. Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142 (1995).
    CAS PubMed Google Scholar
  22. Adams, C.L., Chen, Y.T., Smith, S.J. & Nelson, W.J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).
    Article CAS Google Scholar
  23. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).
    Article CAS Google Scholar
  24. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).
    Article CAS Google Scholar
  25. Adams, C.L. & Nelson, W.J. Cytomechanics of cadherin-mediated cell–cell adhesion. Curr. Opin. Cell Biol. 10, 572–577 (1998).
    Article CAS Google Scholar
  26. Harden, N. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70, 181–203 (2002).
    Article CAS Google Scholar
  27. Tepass, U. Adherens junctions: new insight into assembly, modulation and function. Bioessays 24, 690–695 (2002).
    Article CAS Google Scholar
  28. Bear, J.E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).
    Article CAS Google Scholar
  29. Kovacs, E.M., Ali, R.G., McCormack, A.J. & Yap, A.S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718 (2002).
    Article CAS Google Scholar
  30. Sahai, E. & Marshall, C.J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).
    Article CAS Google Scholar
  31. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).
    Article CAS Google Scholar
  32. Huber, O., Krohn, M. & Kemler, R. A specific domain in α-catenin mediates binding to β-catenin or plakoglobin. J. Cell Sci. 110, 1759–1765 (1997).
    CAS PubMed Google Scholar
  33. Pokutta, S. & Weis, W.I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000).
    Article CAS Google Scholar
  34. Yang, J., Dokurno, P., Tonks, N.K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J. 20, 3645–3656 (2001).
    Article CAS Google Scholar
  35. Pokutta, S., Drees, F., Takai, Y., Nelson, W.J. & Weis, W.I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18868–18874 (2002).
    Article CAS Google Scholar
  36. Woychik, R.P., Maas, R.L., Zeller, R., Vogt, T.F. & Leder, P. 'Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346, 850–853 (1990).
    Article CAS Google Scholar
  37. Maas, R.L., Zeller, R., Woychik, R.P., Vogt, T.F. & Leder, P. Disruption of formin-encoding transcripts in 2 mutant limb deformity alleles. Nature 346, 853–855 (1990).
    Article CAS Google Scholar
  38. Wang, C.C., Chan, D.C. & Leder, P. The mouse formin (Fmn) gene: genomic structure, novel exons, and genetic mapping. Genomics 39, 303–311 (1997).
    Article CAS Google Scholar
  39. Jackson-Grusby, L., Kuo, A. & Leder, P. A variant limb deformity transcript expressed in the embryonic mouse limb defines a novel formin. Genes Dev. 6, 29–37 (1992).
    Article CAS Google Scholar
  40. Caldwell, J.E., Heiss, S.G., Mermall, V. & Cooper, J.A. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28, 8506–8514 (1989).
    Article CAS Google Scholar
  41. MacLean-Fletcher, S. & Pollard, T.D. Mechanism of action of cytochalasin B on actin. Cell 20, 329–341 (1980).
    Article CAS Google Scholar
  42. Khokha, M.K., Hsu, D., Brunet, L.J., Dionne, M.S. & Harland, R.M. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nature Genet. 34, 303–307 (2003).
    Article CAS Google Scholar
  43. Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDIa in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby Canine Kidney cells. Mol. Biol. Cell 10, 2481–2491 (1999).
    Article CAS Google Scholar
  44. Evangelista, M. et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).
    Article CAS Google Scholar
  45. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).
    Article CAS Google Scholar
  46. Dong, Y., Pruyne, D. & Bretscher, A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cell Biol. 161, 1081–1092 (2003).
    Article CAS Google Scholar
  47. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).
    Article CAS Google Scholar
  48. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 (1996).
    Article CAS Google Scholar
  49. Alberts, A.S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).
    Article CAS Google Scholar
  50. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).
    Article CAS Google Scholar

Download references