Minimal nuclear pore complexes define FG repeat domains essential for transport (original) (raw)

References

  1. Macara, I.G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  2. Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).
    Article CAS PubMed Google Scholar
  3. Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  4. Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T. & Matunis, M.J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  5. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
    Article CAS PubMed Google Scholar
  6. Weis, K. Regulating Access to the Genome. Nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).
    Article CAS PubMed Google Scholar
  7. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).
    Article CAS PubMed Google Scholar
  8. Bayliss, R. et al. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).
    Article CAS PubMed Google Scholar
  9. Strasser, K., Bassler, J. & Hurt, E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J. Cell Biol. 150, 695–706 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  10. Strawn, L.A., Shen, T. & Wente, S.R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001).
    Article CAS PubMed Google Scholar
  11. Allen, N.P., Huang, L., Burlingame, A. & Rexach, M. Proteomic analysis of nucleoporin interacting proteins. J. Biol. Chem. 276, 29268–29274 (2001).
    Article CAS PubMed Google Scholar
  12. Allen, N.P. et al. Deciphering networks of protein interactions at the nuclear pore complex. Mol. Cell. Proteomics 1, 930–946 (2002).
    Article CAS PubMed Google Scholar
  13. Ryan, K.J. & Wente, S.R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371 (2000).
    Article CAS PubMed Google Scholar
  14. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  15. Rout, M.P., Aitchison, J.D., Magnasco, M.O. & Chait, B.T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).
    Article CAS PubMed Google Scholar
  16. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  17. Fabre, E., Schlaich, N.L. & Hurt, E.C. Nucleocytoplasmic trafficking: what role for repeated motifs in nucleoporins? Cold Spring Harb. Symp. Quant. Biol. 60, 677–685 (1995).
    Article CAS PubMed Google Scholar
  18. Iovine, M.K. & Wente, S.R. A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J. Cell Biol. 137, 797–811 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  19. Rout, M.P. & Wente, S.R. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 4, 357–365 (1994).
    Article CAS PubMed Google Scholar
  20. Dilworth, D.J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol. 153, 1465–1478 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  21. Suntharalingam, M. & Wente, S.R. Peering through the pore. Nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).
    Article CAS PubMed Google Scholar
  22. Hood, J.K., Casolari, J.M. & Silver, P.A. Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-α export. J. Cell Sci. 113, 1471–1480 (2000).
    CAS PubMed Google Scholar
  23. Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin α. Mol. Cell Biol. 20, 8468–8479 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  24. Pyhtila, B. & Rexach, M. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J. Biol. Chem. 278, 42699–42709 (2003).
    Article CAS PubMed Google Scholar
  25. Floer, M. & Blobel, G. Putative reaction intermediates in Crm1-mediated nuclear protein export. J. Biol. Chem. 274, 16279–16286 (1999).
    Article CAS PubMed Google Scholar
  26. Bogerd, A.M., Hoffman, J.A., Amberg, D.C., Fink, G.R. & Davis, L.I. nup1 mutants exhibit pleiotropic defects in nuclear pore complex function. J. Cell Biol. 127, 319–332 (1994).
    Article CAS PubMed Google Scholar
  27. Fahrenkrog, B., Hurt, E.C., Aebi, U. & Pante, N. Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes. J. Cell Biol. 143, 577–588 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  28. Ho, A.K. et al. Assembly and preferential localization of Nup116p on the cytoplasmic face of the nuclear pore complex by interaction with Nup82p. Mol. Cell Biol. 20, 5736–5748 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  29. Wente, S.R., Rout, M.P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119, 705–723 (1992).
    Article CAS PubMed Google Scholar
  30. Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).
    Article CAS PubMed Google Scholar
  31. Shulga, N. et al. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J. Cell Biol. 135, 329–339 (1996).
    Article CAS PubMed Google Scholar
  32. Shulga, N., Mosammaparast, N., Wozniak, R. & Goldfarb, D.S. Yeast nucleoporins involved in passive nuclear envelope permeability. J. Cell Biol. 149, 1027–1038 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  33. Walther, T.C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  34. Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  35. Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol. 154, 937–950 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  36. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  37. Shulga, N. & Goldfarb, D.S. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell Biol. 23, 534–542 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  38. Aitchison, J.D., Blobel, G. & Rout, M.P. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274, 624–627 (1996).
    Article CAS PubMed Google Scholar
  39. Damelin, M. & Silver, P.A. Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol. Cell 5, 133–140 (2000).
    Article CAS PubMed Google Scholar
  40. Shah, S. & Forbes, D.J. Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant-negative inhibitors. Curr. Biol. 8, 1376–1386 (1998).
    Article CAS PubMed Google Scholar
  41. Rout, M.P., Blobel, G. & Aitchison, J.D. A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725 (1997).
    Article CAS PubMed Google Scholar
  42. Rosenblum, J.S., Pemberton, L.F. & Blobel, G. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol. 139, 1655–1661 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  43. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).
    Article CAS PubMed Google Scholar
  44. Pemberton, L.F., Rosenblum, J.S. & Blobel, G. A distinct and parallel pathway for the nuclear import of an mRNA-binding protein. J. Cell Biol. 139, 1645–1653 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  45. Marelli, M., Aitchison, J.D. & Wozniak, R.W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 143, 1813–1830 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  46. Iovine, M.K., Watkins, J.L. & Wente, S.R. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J. Cell Biol. 131, 1699–1713 (1995).
    Article CAS PubMed Google Scholar
  47. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  48. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  49. Kraemer, D.M., Strambio-de-Castillia, C., Blobel, G. & Rout, M.P. The essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the nuclear pore complex and serves in karyopherin-mediated binding of transport substrate. J. Biol. Chem. 270, 19017–19021 (1995).
    Article CAS PubMed Google Scholar
  50. Schlaich, N.L., Haner, M., Lustig, A., Aebi, U. & Hurt, E.C. In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol. Biol. Cell 8, 33–46 (1997).
    Article CAS PubMed PubMed Central Google Scholar

Download references