- Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).
Article CAS Google Scholar
- Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).
Article CAS Google Scholar
- Yu, D. & Hung, M.-C. in DNA Alterations in Cancer (ed. Ehrlich, M.) Ch. 21 (Eaton, Natick, Massachusetts, 2000).
Google Scholar
- Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathways. J. Biol. Chem. 275, 8027–8031 (2000).
Article CAS Google Scholar
- Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/_neu_-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).
Article CAS Google Scholar
- Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267 (1998).
Article CAS Google Scholar
- Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).
Article CAS Google Scholar
- Peso, L. D., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science 278, 687–689 (1997).
Article Google Scholar
- Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).
Article CAS Google Scholar
- Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).
Article CAS Google Scholar
- Kops, G. J. P. L. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).
Article CAS Google Scholar
- Ozes, O. N. et al. NF-κB activation by tumor necrosis factor requires the Akt serine–threonine kinase. Nature 401, 82–85 (1999).
Article CAS Google Scholar
- Sabbatini, P. & McCormick, F. Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J. Biol. Chem. 274, 24263–24269 (1999).
Article CAS Google Scholar
- Woods, D. B. & Vousden, K. H. Regulation of p53 function. Exp. Cell Res. 264, 56–66 (2001).
Article CAS Google Scholar
- Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).
Article CAS Google Scholar
- Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).
Article CAS Google Scholar
- Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
Article CAS Google Scholar
- Hupp, T. R., Lane, D. P. & Ball, K. L. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352, 1–17 (2000).
Article CAS Google Scholar
- Caspari, T. Checkpoints: how to activate p53. Curr. Biol. 10, R315–R317 (2000).
Article CAS Google Scholar
- Momand, J., Wu, H.-H. & Dasgupta, G. MDM2—master regulator of the p53 tumor suppressor protein. Gene 242, 15–29 (2000).
Article CAS Google Scholar
- Colman, M. S., Afshari, C. A. & Barrett, J. C. Regulation of p53 stability and activity in response to genotoxic stress. Mut. Res. 462, 179–188 (2000).
Article CAS Google Scholar
- Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J. & Livingston, D. M. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).
Article CAS Google Scholar
- Grossman, S. R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998).
Article CAS Google Scholar
- Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and nuetralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).
Article CAS Google Scholar
- Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: _ARF_-Ink4a locus deletion impairs both Rb and p53 tumor suppressor pathways. Cell 92, 725–734 (1998).
Article CAS Google Scholar
- Sherr, C. J. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695 (2000).
CAS PubMed Google Scholar
- Honda, R. & Yasuda, H. Association of p19ARF with MDM2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).
Article CAS Google Scholar
- Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).
Article CAS Google Scholar
- Zhang, Y. & Xiong, Y. Mutation in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).
Article CAS Google Scholar
- Yu, D. & Hung, M.-C. Role of erbB2 in breast cancer chemosensitivity. BioEssays 22, 673–680 (2000).
Article CAS Google Scholar
- Tsai, C. M. et al. Enhanced chemoresistance by elevation of p185 levels in HER-2/_neu_-transfected human lung cancer cells. J. Natl Cancer Inst. 87, 682–684 (1995).
Article CAS Google Scholar
- Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkings in perspective. Nature 408, 433–439 (2000).
Article CAS Google Scholar
- Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).
Article CAS Google Scholar
- Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).
Article CAS Google Scholar
- Lianos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell Biol. 3, 445–452 (2001).
Article Google Scholar
- Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).
Article CAS Google Scholar