Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science255, 817–823 (1992). ArticleCASPubMed Google Scholar
Hyrien, O., Maric, C. & Mechali, M. Transition in specification of embryonic metazoan DNA replication origins. Science270, 994–997 (1995). ArticleCASPubMed Google Scholar
Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol.19, 547–555 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lunyak, V.V., Ezrokhi, M., Smith, H.S. & Gerbi, S.A. Developmental changes in the Sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol.22, 8426–8437 (2002). ArticleCASPubMedPubMed Central Google Scholar
Harland, R.M. & Laskey, R.A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell21, 761–771 (1980). ArticleCASPubMed Google Scholar
Mechali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell38, 55–64 (1984). ArticleCASPubMed Google Scholar
Prioleau, M.N., Buckle, R.S. & Mechali, M. Programming of a repressed but committed chromatin structure during early development. EMBO J.14, 5073–5084 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kitsberg, D., Selig, S., Keshet, I. & Cedar, H. Replication structure of the human β-globin gene domain. Nature366, 588–590 (1993). ArticleCASPubMed Google Scholar
Pelizon, C., Diviacco, S., Falaschi, A. & Giacca, M. High-resolution mapping of the origin of DNA replication in the hamster dihydrofolate reductase gene domain by competitive PCR. Mol. Cell. Biol.16, 5358–5364 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, T., Rein, T. & DePamphilis, M.L. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Mol. Cell. Biol.18, 3266–3277 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wu, J.R. & Gilbert, D.M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science271, 1270–1272 (1996). ArticleCASPubMed Google Scholar
Rein, T., Kobayashi, T., Malott, M., Leffak, M. & DePamphilis, M.L. DNA methylation at mammalian replication origins. J. Biol. Chem.274, 25792–25800 (1999). ArticleCASPubMed Google Scholar
Bielinsky, A.K. & Gerbi, S.A. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science279, 95–98 (1998). ArticleCASPubMed Google Scholar
Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science287, 2023–2026 (2000). ArticleCASPubMed Google Scholar
Van der Vliet, P.C. in Concepts in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M.L.) 87–118 (Cold Spring Harbor Laboratory Press, New York, 1999). Google Scholar
Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Ann. Rev. Genet.34, 77–137 (2000). ArticleCASPubMed Google Scholar
Prioleau, M.N., Huet, J., Sentenac, A. & Mechali, M. Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell77, 439–449 (1994). ArticleCASPubMed Google Scholar
Modak, S.P., Principaud, E. & Spohr, G. Regulation of Xenopus c-myc promoter activity in oocytes and embryos. Oncogene8, 645–654 (1993). CASPubMed Google Scholar
Schaarschmidt, D., Baltin, J., Stehle, I.M., Lipps, H.J. & Knippers, R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J.23, 191–201 (2004). ArticleCASPubMed Google Scholar
Jacob, F., Brenner, J. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol.28, 329–348 (1963). ArticleCAS Google Scholar
Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature421, 448–453 (2003). ArticlePubMed Google Scholar
Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature355, 219–224 (1992). ArticleCASPubMed Google Scholar
Wolffe, A.P. Chromatin: Structure and Function. (Acad. Press, San Diego, CA, 1998). Google Scholar
Cheng, L. & Kelly, T.J. Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell59, 541–551 (1989). ArticleCASPubMed Google Scholar
Guo, Z.S. & DePamphilis, M.L. Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol. Cell. Biol.12, 2514–2524 (1992). ArticleCASPubMedPubMed Central Google Scholar
Li, R. & Botchan, M.R. Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc. Natl Acad. Sci. USA91, 7051–7055 (1994). ArticleCASPubMedPubMed Central Google Scholar
Harvey, K.J. & Newport, J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol.23, 6769–6779 (2003). ArticleCASPubMedPubMed Central Google Scholar
Workman, J.L. & Kingston, R.E. Nucleosome core displacement in vitro via a metastable transcription factor–nucleosome complex. Science258, 1780–1784 (1992). ArticleCASPubMed Google Scholar
Cote, J., Quinn, J., Workman, J.L. & Peterson, C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science265, 53–60 (1994). ArticleCASPubMed Google Scholar
Utley, R.T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature394, 498–502 (1998). ArticleCASPubMed Google Scholar
Ryan, M.P., Stafford, G.A., Yu, L. & Morse, R.H. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol. Cell. Biol.20, 5847–5857 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev.17, 1894–1908 (2003). ArticleCASPubMedPubMed Central Google Scholar
Prasanth, S.G., Prasanth, K.V. & Stillman, B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science297, 1026–1031 (2002). ArticleCASPubMed Google Scholar
Romanowski, P., Madine, M.A., Rowles, A., Blow, J.J. & Laskey, R.A. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr. Biol.6, 1416–1425 (1996). ArticleCASPubMed Google Scholar
Carpenter, P.B., Mueller, P.R. & Dunphy, W.G. Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature379, 357–360 (1996). ArticleCASPubMed Google Scholar
Royzman, I., Austin, R.J., Bosco, G., Bell, S.P. & Orr-Weaver, T.L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev.13, 827–840 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kong, D., Coleman, T.R. & DePamphilis, M.L. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC. EMBO J.22, 3441–3450 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lu, Z.H., Sittman, D.B., Romanowski, P. & Leno, G.H. Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin. Mol. Biol. Cell9, 1163–1176 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bouvet, P., Dimitrov, S. & Wolffe, A.P. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev.8, 1147–1159 (1994). ArticleCASPubMed Google Scholar
Giacca, M., Pelizon, C. & Falaschi, A. Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction. Methods13, 301–312 (1997). ArticleCASPubMed Google Scholar