Specification of a DNA replication origin by a transcription complex (original) (raw)

References

  1. DePamphilis, M.L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21, 5–16 (1999).
    Article CAS PubMed Google Scholar
  2. Mechali, M. DNA replication origins: from sequence specificity to epigenetics. Nature Rev. Genet. 2, 640–645 (2001).
    Article CAS PubMed Google Scholar
  3. Gilbert, D.M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  4. Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823 (1992).
    Article CAS PubMed Google Scholar
  5. Gomez, M. & Antequera, F. Organization of DNA replication origins in the fission yeast genome. EMBO J. 18, 5683–5690 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  6. Hyrien, O., Maric, C. & Mechali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995).
    Article CAS PubMed Google Scholar
  7. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol. 19, 547–555 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Maric, C., Benard, M. & Pierron, G. Developmentally regulated usage of Physarum DNA replication origins. EMBO Rep. 4, 474–478 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  9. Lunyak, V.V., Ezrokhi, M., Smith, H.S. & Gerbi, S.A. Developmental changes in the Sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol. 22, 8426–8437 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  10. Harland, R.M. & Laskey, R.A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771 (1980).
    Article CAS PubMed Google Scholar
  11. Mechali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64 (1984).
    Article CAS PubMed Google Scholar
  12. Prioleau, M.N., Buckle, R.S. & Mechali, M. Programming of a repressed but committed chromatin structure during early development. EMBO J. 14, 5073–5084 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  13. Giacca, M. et al. Fine mapping of a replication origin of human DNA. Proc. Natl Acad. Sci. USA 91, 7119–7123 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  14. Kitsberg, D., Selig, S., Keshet, I. & Cedar, H. Replication structure of the human β-globin gene domain. Nature 366, 588–590 (1993).
    Article CAS PubMed Google Scholar
  15. Pelizon, C., Diviacco, S., Falaschi, A. & Giacca, M. High-resolution mapping of the origin of DNA replication in the hamster dihydrofolate reductase gene domain by competitive PCR. Mol. Cell. Biol. 16, 5358–5364 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  16. Kobayashi, T., Rein, T. & DePamphilis, M.L. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Mol. Cell. Biol. 18, 3266–3277 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  17. Wu, J.R. & Gilbert, D.M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271, 1270–1272 (1996).
    Article CAS PubMed Google Scholar
  18. Rein, T., Kobayashi, T., Malott, M., Leffak, M. & DePamphilis, M.L. DNA methylation at mammalian replication origins. J. Biol. Chem. 274, 25792–25800 (1999).
    Article CAS PubMed Google Scholar
  19. Bielinsky, A.K. & Gerbi, S.A. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science 279, 95–98 (1998).
    Article CAS PubMed Google Scholar
  20. Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science 287, 2023–2026 (2000).
    Article CAS PubMed Google Scholar
  21. Van der Vliet, P.C. in Concepts in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M.L.) 87–118 (Cold Spring Harbor Laboratory Press, New York, 1999).
    Google Scholar
  22. Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Ann. Rev. Genet. 34, 77–137 (2000).
    Article CAS PubMed Google Scholar
  23. Prioleau, M.N., Huet, J., Sentenac, A. & Mechali, M. Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77, 439–449 (1994).
    Article CAS PubMed Google Scholar
  24. Modak, S.P., Principaud, E. & Spohr, G. Regulation of Xenopus c-myc promoter activity in oocytes and embryos. Oncogene 8, 645–654 (1993).
    CAS PubMed Google Scholar
  25. Schaarschmidt, D., Baltin, J., Stehle, I.M., Lipps, H.J. & Knippers, R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J. 23, 191–201 (2004).
    Article CAS PubMed Google Scholar
  26. Jacob, F., Brenner, J. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 329–348 (1963).
    Article CAS Google Scholar
  27. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).
    Article PubMed Google Scholar
  28. Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature 355, 219–224 (1992).
    Article CAS PubMed Google Scholar
  29. Wolffe, A.P. Chromatin: Structure and Function. (Acad. Press, San Diego, CA, 1998).
    Google Scholar
  30. Cheng, L. & Kelly, T.J. Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59, 541–551 (1989).
    Article CAS PubMed Google Scholar
  31. Guo, Z.S. & DePamphilis, M.L. Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol. Cell. Biol. 12, 2514–2524 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  32. Li, R. & Botchan, M.R. Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc. Natl Acad. Sci. USA 91, 7051–7055 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  33. Harvey, K.J. & Newport, J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol. 23, 6769–6779 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  34. Workman, J.L. & Kingston, R.E. Nucleosome core displacement in vitro via a metastable transcription factor–nucleosome complex. Science 258, 1780–1784 (1992).
    Article CAS PubMed Google Scholar
  35. Cote, J., Quinn, J., Workman, J.L. & Peterson, C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).
    Article CAS PubMed Google Scholar
  36. Utley, R.T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498–502 (1998).
    Article CAS PubMed Google Scholar
  37. Ryan, M.P., Stafford, G.A., Yu, L. & Morse, R.H. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol. Cell. Biol. 20, 5847–5857 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  38. Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  39. Prasanth, S.G., Prasanth, K.V. & Stillman, B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297, 1026–1031 (2002).
    Article CAS PubMed Google Scholar
  40. Romanowski, P., Madine, M.A., Rowles, A., Blow, J.J. & Laskey, R.A. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr. Biol. 6, 1416–1425 (1996).
    Article CAS PubMed Google Scholar
  41. Carpenter, P.B., Mueller, P.R. & Dunphy, W.G. Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature 379, 357–360 (1996).
    Article CAS PubMed Google Scholar
  42. Royzman, I., Austin, R.J., Bosco, G., Bell, S.P. & Orr-Weaver, T.L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev. 13, 827–840 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  43. Kong, D., Coleman, T.R. & DePamphilis, M.L. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC. EMBO J. 22, 3441–3450 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  44. Lu, Z.H., Sittman, D.B., Romanowski, P. & Leno, G.H. Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin. Mol. Biol. Cell 9, 1163–1176 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  45. Bouvet, P., Dimitrov, S. & Wolffe, A.P. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 8, 1147–1159 (1994).
    Article CAS PubMed Google Scholar
  46. Giacca, M., Pelizon, C. & Falaschi, A. Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction. Methods 13, 301–312 (1997).
    Article CAS PubMed Google Scholar

Download references