Dicer is essential for formation of the heterochromatin structure in vertebrate cells (original) (raw)

References

  1. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).
    Article CAS Google Scholar
  2. Provost, P. et al. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc. Natl Acad. Sci. USA 99, 16648–16653 (2002).
    Article CAS Google Scholar
  3. Hall, I.M., Noma, K. & Grewal, S.I.S. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).
    Article CAS Google Scholar
  4. Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res. 11, 137–146 (2003).
    Article CAS Google Scholar
  5. Choo, K.H.A. The Centromere. (Oxford University Press, Oxford, UK, 1997).
    Google Scholar
  6. Hudson, D.F., Morrison, C., Ruchaud, S. & Earnshaw, W.C. Reverse genetics of essential genes in tissue-culture cells: 'dead cells talking'. Trends Cell Biol. 12, 281–287 (2002).
    Article CAS Google Scholar
  7. Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215–217 (2003).
    Article CAS Google Scholar
  8. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
    Article CAS Google Scholar
  9. Ikeno, M., Masumoto, H. & Okazaki, T. Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range a-satellite DNA arrays of human chromosome 21. Hum. Mol. Genet. 3, 1245–1257 (1994).
    Article CAS Google Scholar
  10. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nature Biotech. 16, 431–439 (1998).
    Article CAS Google Scholar
  11. Brown, W.R., Hubbard, S.J., Tickle, C. & Wilson, S.A. The chicken as a model for large-scale analysis of vertebrate gene function. Nature Rev. Genet. 4, 87–98 (2003).
    Article CAS Google Scholar
  12. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).
    Article CAS Google Scholar
  13. Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).
    CAS PubMed PubMed Central Google Scholar
  14. Scueler, M.G., Higgins, A.W., Rudd, M.K., Gustashaw, K. & Willard, H.F. Genomic and genetic definition of a functional human centromere. Science 294, 109–115 (2001).
    Article Google Scholar
  15. Sullivan, B.A. Centromere round-up at heterochromatin corral. Trends Biotech. 20, 89–92 (2002).
    Article CAS Google Scholar
  16. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
    Article CAS Google Scholar
  17. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromosome-based gene silencing. Science 301, 1069–1074 (2003).
    Article CAS Google Scholar
  18. Spence, J.M. et al. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X α-satellite array. EMBO J. 21, 5269–5280 (2002).
    Article CAS Google Scholar
  19. Bernard, P., Maure, J.-F., Partridge, J.F., Genier, S., Javerzat, J.-P. & Allshire, R.C. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).
    Article CAS Google Scholar
  20. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).
    Article CAS Google Scholar
  21. Hayakawa, T., Haraguchi, T., Masumoto, H. & Hiraoka, Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 116, 3327–3338 (2003).
    Article CAS Google Scholar
  22. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).
    Article CAS Google Scholar
  23. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
    Article CAS Google Scholar
  24. Blower, M.D., Sullivan, B.A. & Karpen, G.H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).
    Article CAS Google Scholar
  25. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi Machinery. Science 303, 669–672 (2004).
    Article CAS Google Scholar
  26. Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20, 4603–4617 (2001).
    Article CAS Google Scholar
  27. Fukagawa, T. & Brown, W.R.A. Efficient conditional mutation of the vertebrate CENP-C gene. Hum. Mol. Genet. 6, 2301–2308 (1997).
    Article CAS Google Scholar
  28. Nishihashi et al. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2, 463–476 (2002).
    Article CAS Google Scholar
  29. Fukagawa, T., Pendon, C., Morris, J. & Brown, W. CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J. 18, 4196–4209 (1999).
    Article CAS Google Scholar

Download references